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EXECUTIVE SUMMARY 
 

As part of traffic monitoring programs, state transportation departments are required to provide 
information about the status of their transportation infrastructure based on traffic data collected through 
sensors. NCDOT (the North Carolina Department of Transportation) is required to report annually to the 
FHWA data the condition of the highway network. To protect against accelerated deterioration, it needs to 
monitor the volumes and weights of vehicles on the interstate highway network. Implementation of a WIM 
system would provide the accurate data needed for reporting and overweight vehicle enforcement. This 
project sought to identify how states nationwide are using WIM systems to assess the quality of their 
roadways and the effects of use, especially by trucks.  

The Traffic Monitoring Guide (FHWA, 2022) and the Mechanistic-Empirical Pavement Design 
Guide: A Manual of Practice (AASHTO, 2021) provide general guidance about how to collect traffic 
volumes, vehicle classification information, and weight data. Weigh-In-Motion (WIM) systems are the 
technology most used to collect the datasets used in assessing the impact of vehicles on the infrastructure; 
increasing the safety of the systems; and assessing road damage and facility lifetimes. This research has 
aimed to help NCDOT identify and adopt a new system for monitoring freight activity, especially truck weight 
distributions on the highways across the state. We have documented the current use of WIMs by states 
nationwide, as well as plans for the future, plus, within North Carolina, the perceived value that WIM data 
would provide.  

We have explored ways in which a re-instituted weigh-in-motion (WIM) system could become a 
sustainable, integral part of the decision support system used for pavement design, bridge design, asset 
management, load rating, commercial vehicle weight enforcement support, and freight planning and 
logistics. We show how NCDOT can maximize the benefits of the new WIM program to offset the investment 
required to generate reliable traffic load data. Our research findings include an identification of the spectrum 
of vehicle weight data needs within the agency, an inventory of the statistics needed by stakeholders, and 
identification of the standards required to generate them reliably. We anticipate that the Traffic Survey 
Group will use our findings to seek funding for rejuvenated WIM activity. We anticipate that the beneficiaries 
will include Pavement and Bridge Engineering, Freight and Logistics, Interagency Coordination, 
Transportation Planning, Planning and Programming, Strategic Initiatives & Program Support, Highway 
Operations, and Multi-Modal Transportation. 

 

  



 

 

1. INTRODUCTION 

WIM systems provide important traffic data including traffic volume counts, growth rate, vehicle 
classification, vehicle speed, gross vehicle weight, individual axle loads, number of axles and axle spacing, 
truck percentage, monthly adjustment factor, and hourly distribution factor. These traffic parameters are 
used for pavement design and management, highway performance monitoring system, traffic planning, 
bridge design, maintenance, truck overloading and pavement damage assessment, overweight 
quantification, speed quantification, vehicle class distribution characterization, freight planning and logistics 
purposes. The requirements of the Fixing America’s Surface Transportation (FAST) Act increased the need 
for reliable, effective, and accurate freight monitoring programs that can generate data for broad range of 
stakeholders. 

For enforcement of weight standards, states have typically relied on static weigh stations. These 
installations require trucks to exit the highway to a staffed facility, where each truck must stop on a set of 
fixed scales for weighing. This method decreases truck travel time reliability, and the time required creates 
a queue when the station is operating, allowing trucks to bypass and avoid detection. 

 
Weigh-in-motion (WIM) systems can augment these activities by improving the effectiveness of 
enforcement programs and the long-term costs of pavement maintenance and management. Static weigh 
stations cannot monitor 100% of freight movement, since they have limited operating hours, and the time 
required to capture static weight means long queues allow trucks to avoid the station even when it is staffed. 
Having a pre-screening WIM system can allow underweight vehicles to bypass the station, while overweight 
vehicle enforcement can improve. Since states that have higher numbers of WIM stations should have 
better enforcement, the reduction of overweight vehicles should correspond to better roadways as 
measured by the International Roughness Index (IRI). By comparing WIM and IRI data from fifteen states 
over a period of three years, we predict that states with more WIM stations will have better road conditions. 
  

1.1.Background 
 

In 1956, President Dwight D. Eisenhower signed the Federal-Aid Highway Act, which created the federal 
Interstate Highway System (IHS). The act supplied federal funds to state governments that helped in the 
construction of a system of interconnected highways, leading to high-speed vehicle traffic along well-
maintained and nationally standardized roadways. To protect their investment, the federal government 
regulated the size and weight of vehicles that were permitted on the highway system (Hazlett, 2020). Overall 
enforcement of the weight standards falls on the individual states, who are responsible for accurately 
measuring vehicle weights and collecting permit fees and fines for overweight vehicles. 
 
At the time of the WIM survey conducted by NCHRP in 2019 (NAS, 2019), 43 states were collecting WIM 
data; two had never done so; and 5 – including North Carolina – had closed their WIM programs. In 
NCDOT’s case, there had been 45 WIM stations, one of the more developed weight monitoring programs 
in the nation.  However, despite the federal traffic reporting requirements, the program ended due to funding 
problems, high maintenance costs and limited usage.  Now, as part of developing a new truck weight 
monitoring program, NCDOT wants to see if the WIM program should be reinstated, It wants to know how 
WIM data could be used in the decision-making process within the agency and by the stakeholders in the 
transportation industry.  
 
In this research effort, we have explored potential use of a renewed WIM program as a decision support 
tool for NCDOT; not just a data source for federal reporting requirements. Anticipated uses include 
pavement design, bridge design, asset management, load rating, commercial vehicle weight enforcement 
support, and freight planning and logistics. The project has sought ways for NCDOT to maximize the 
benefits of the new WIM program to offset the investment required to generate reliable traffic load data.  By 
exploring the available and emerging technologies required to collect that data, we have provided design 
and implementation guidelines for a monitoring program and data use for: 

• pavement design 
• pavement management 
• bridge load ratings 
• bridge management 
• weight enforcement support 



 

 

• freight planning and logistics 
• policymaking 
• alternative fuels for long-haul freight transport 
• transformation to smart and automated systems. 
 

1.2.Research Need Definition  

For the past five years, the NCDOT has not collected or used WIM data in spite of expectations from FHWA 
to do so. See the Long-Term Pavement Performance (LTPP) guide (FHWA, 2005), the USDOT Traffic 
Monitoring Guide (TMG) (USDOT, 2001), and AASHTO Pavement Design Guide (AASHTO, 2021). The 
requirements for freight monitoring imposed by the FAST Act made it important for all state DOTs to 
investigate ways to develop a comprehensive and cost-effective freight monitoring program that would 
generate timely and reliable statistics to address the needs of all stakeholders using WIM data.  

From 1997 to 2014, the NCDOT Traffic Survey Group collected WIM data to support a nationwide long-
term pavement performance (LTPP) monitoring program. Twenty-four (24) bi-directional LTPP monitoring 
stations were installed. Pavement design, bridge management, and enforcement made use of the data. 
However, because of sampling issues and the varying data standards of the secondary users, this program 
had limited value. So, the program was discontinued.  

NCDOT is now considering the reinstatement of a WIM system. Before doing so, however, it wants to 
acquire clear information about: 

• the usage area and weight data requirements of internal and external stakeholders 

• data needs of the future stakeholders such as electrified road network operators, autonomous 
systems, etc. 

• data standards that enable data reuse and interoperability across sectors 

• data collection, data governance, and quality control policies  

• available technologies and required investment to collect, store, process, analyze, and 
disseminate data  

• potential integrations to broaden the use and the value of the data (e.g., WIM data combined with 
trip and commodity data) 

• strategic approaches to design a new vehicle weight monitoring system that excels in usability, 
functionality, reliability, and stability.  

The stakeholders that are expected to have an interest in WIM data include, but are not limited to, the 
following: 

In-Agency Stakeholders Out-of-Agency Stakeholders 

• Construction Division 

• Maintenance Division 

• Transportation Planning Division 

• Planning and Programming Division 

• Traffic Survey Group 

• Strategic Initiatives & Program Support 

• Highway Operations  

• Multi-Modal Transportation 

• Freight and Logistics Director 

• Interagency Director 

• Ports and terminals 

• Airports 

• Multimodal facilities 

• Pavement designers 

• Freight planning group 

• Asset management group 

• Bridge designers 

• Center of Excellence 

• R&D 
 

• FHWA 

• Road transport operators 

• Road traffic managers 

• Toll operators 

• Rail and water transport operators 

• Consultants 

• ICT and Technology companies  

• U.S. Military 

• NC National Guard 

• EPA 

• Vehicle manufacturers 

• Transportation equipment suppliers 

• MPOs or COGs 

• Counties, Cities and municipalities  

• Fleet operators, drivers 

• Logistics service providers 

• Industrial sites, hubs and cross-docking stations 

• Charging stations, fleet parking and truck stops 

• National, regional and local governments and the 
private sector. 



 

 

1.3.State of the Art, in Research and Practice 

Multiple units within NCDOT, the MPOs/RPOs statewide, and local government agencies are responsible 
for planning and maintaining roadways. Critical to this process is a clear understanding of the loading of 
the roadway which can vary greatly for nearby or similar facilities due to truck routes and the movement of 
goods in the state. An enhanced vehicle weight monitoring program would enable these agencies to make 
better, more data-informed decisions about how to accommodate and facilitate freight flows.  

Hence, this project sought to:  

• Inventory stakeholders’ requirements for a weight monitoring program; 
• Collect and analyze survey data from various WIM stakeholders;   
• Perform a literature review and analysis of technologies and best practices in WIM; 
• Create recommendations and guidance for the design of a reinstated WIM program; and   
• Conceptualize a system design.   

Our objective was to create guidance would be used by multiple divisions and groups within NCDOT. We 
anticipate that the immediate users of the recommendations and guidance will be the Traffic Survey Group. 
Other interested divisions are anticipated to be Pavements and Bridges, Freight and Logistics, Interagency 
Coordination, Transportation Planning, Planning and Programming, Strategic Initiatives & Program 
Support, Highway Operations, and Multi-Modal Transportation. 

Our findings should enable NCDOT to maximize the benefits of the new WIM program to offset the 
investment required to generate reliable traffic load data. The use of the recommended guidelines in 
developing a strategic approach to vehicle weight monitoring will result in streamlined data flow and reports 
suited to all processes that require weight monitoring information. The ultimate impact is having increased 
operational efficiency, savings in both time and money, and flexibility to adopt periodical changes in vehicle 
weight laws.  As a decision-making tool, the proposed continuous weight monitoring system design will 
provide real-time statistics for improved material structure, pavement, and performance. 

Our understanding of stakeholders’ requirements for a weight monitoring program and providing guidance 
for the selection of the most appropriate technologies will provide significant benefits compared to the total 
cost of the project. Project assesses the potential benefits of the project by identifying different impacts of 
the project compared to a well-defined baseline alternative. Then, potential benefits will be compared to the 
costs to justify the project outcomes against no-outcomes, which is no guidance on the design of a weight 
monitoring program.  

1.4. Purpose and Scope 

The goal of this research has been to perform an assessment of new and advanced technologies that could 
be used to monitor truck flows within the state. As was true with the previous WIM-based monitoring system, 
of principal interest is the distribution of truck weights and vehicle configurations, differentiated among 
highway facility types and regions. A re-initiation of the previous WIM stations is one option, but there are 
several others that have recently become available. Among these are truck-based monitoring apps (e.g., 
https://drivewyze.com/), video-based vehicle monitoring technologies, license plate readers, Bluetooth 
sensors, and tire pressure device monitoring systems. Undoubtedly, there are others. Each of these has 
been explored and characterized, and most options have been studied in detail so that the benefits, costs, 
and operational practicality are understood. Of paramount importance has been the ability of each option 
to meet the needs of the most interested stakeholders.  

These objectives have been achieved by: 

1. Doing a survey to understand the current and potential future use of truck data by all stakeholders 
2. Reviewing the current state-of-the-art methodologies used for vehicle weight monitoring 
3. Assessing the required data standards and policies; reporting gaps 
4. Identifying ways to enhance the alignment between existing infrastructure, new data requirements, 

available and emerging technologies, and business requirements. 
5. Developing alternative technology adoption strategies that would meet the needs of all interested 

stakeholders. 
6. Providing a conceptual system design to store, manage and truck data; suggest integrations with 

the traffic and highway patrol data. 
7. Conducting a cost-benefit analysis for each alternative. 

https://drivewyze.com/


 

 

Since monthly truck flow data collected from a single monitoring station can be upwards of 300 MB, several 
years of data from monitoring stations statewide would yield a Big Data management and analysis 
challenge. In light of this, we have recommended a vehicle weight monitoring system that uses Artificial 
Intelligence and Computer Vision (CV) algorithms to analyze WIM data. This includes features like:  

(1) automatically analyze the data to discover differences in traffic groups or loading patterns, and to 
estimate the spectrum of full axle load data under different conditions 

(2) extract usable information from the raw data for all users by developing and implementing advanced 
algorithms for analysis and data cleansing  

(3) develop functionality that meets the needs of the stakeholders 
(4) develop interfaces that can be used by participating states to access data in customized formats  
(5) prepare training materials and deliver training for personnel from participating states; and  
(6) provide technical support to participating states.  

1.5.Research Approach 

The research team followed the following methodology:  

• systematic review and meta-analysis of the literature on weight monitoring technologies, 
implementations, best practices, data needs, costs, and benefits 

• semi-structured interviews and meetings with selected stakeholders 

• survey of stakeholders  

• review of emerging technologies  

• recommendations for a weight-monitoring system with cost-benefit analysis and implementation 
plan 

To achieve the stated project objectives, The FSU / NCSU project team collaborated on executing the 
following project tasks: 

Task 1: Project Initiation/Kick-Off Meeting: The research team met with the Steering and 
Implementation Committee (StIC) to discuss the overall research plan and solicit topics to highlight during 
the literature review. The team reviewed the initial list of stakeholders to be included in the study. 

Task 2: Literature and Best Practices Review: The research team reviewed the state of the practice in 
vehicle weight monitoring programs around the world. The comprehensive review included both academic 
journal and industry reports. The review results were documented and periodically shared with the StIC. 
The findings of the literature review helped the research team in survey design and preparing survey 
questions. 

Task 3: Stakeholder Interviews and On-Line Survey: The research team identified more than thousand 
stakeholders in four different groups. With close collaborations with the StIC, the research team designed 
multiple online surveys (using Qualtrics) to gain a sense of the extent and ways in which enhanced truck 
weight data might be used elsewhere within the department and state agencies.  

Task 4: Analysis of Stakeholder Interviews and Survey Results: The survey data was analyzed and 
presented to the StIC multiple times, with a critical analysis of the findings. The research team organized 
stakeholders into a “tier” system of WIM data users where some stakeholders may find the new data 
products to be helpful but not necessary for operations while others may have a great need to incorporate 
vehicle weight data into critical programs. The findings of the survey helped inform the research team of 
the scope of data collection and product needs. 

Task 5: Analysis of Program Needs: The summarized findings of the survey will be reviewed with the 
StIC to identify the priority needs that the monitoring program must address. This analysis will collect the 
scoping considerations needed for the system design process. The team anticipates that by prioritizing 
individual needs, a final system design can be considered, which may include features that are beneficial 
to all users while remaining cost-efficient. 

Task 6: Technology Evaluation: The research team will identify the multiple technologies available for 
vehicle weight monitoring and document their capabilities. The team will also collect information on the 
equipment cost, installation costs, and maintenance needs. Finally, the team will document the potential 
data products supported by each of the technologies. The findings of the technology evaluation will be 
incorporated into the cost estimation in Task 7. 



 

 

Task 7: Develop Recommendations for System Design   

a) Program design – specify options for technologies, standards, and relative size 
b) Product inventory – specify the data products the program design supports 
c) Costs – identify the general startup and recurring costs 
d) Benefits – characterize the direct and indirect benefits of a strategic approach to weight 

monitoring 
e) Funding sources – identify sources of funding based on processes supported 
f) Sourcing options – identify agency and out-sourced resources 
g) Implementation plan – specify the sequence of actions necessary to implement effectively 
h) Emerging technologies – identify new technologies and services that may be impactful to the 

program expected to be available in the near term 
 

Task 8: Final Report and Program Guidance: The research team documented the findings of the 
research tasks in quarterly reports, and this final report includes the overall program guidance to inform 
NCDOT decision-makers in the next steps for potential implementation of the monitoring program. 

Task 9: Project Management: The principal investigator organized and delivered quarterly progress 
reports to the NCDOT Research Unit. The research team held periodic meetings to ensure task progress 
and to receive timely feedback from the StIC throughout the project. 

1.6.Organization of the Report 

This report is organized as follows. The report begins with an introduction that provides background 
information on the need for weight monitoring platform, defines the research need, and describes the 
purpose and scope of the report. It then presents a literature review that summarizes the key findings of 
the existing research on weight monitoring systems (WMP) and WIM technology. Next, the report analyzes 
the stakeholders' requirements based on survey results. The survey analysis is used to develop a set of 
recommendations and guidance on the design of a comprehensive weight-monitoring platform. The report 
concludes with a recommended system design for a WMP that incorporates emerging WIM technology. 
The system design is based on the recommendations and guidance developed in the previous section. It 
includes a discussion of the system architecture, key components, and data flows. Overall, this report 
provides a valuable resource for transportation agencies and other stakeholders who are considering 
implementing a weight monitoring platform. It provides a comprehensive overview of the key issues and 
considerations, as well as a conceptual system design that can be used as a starting point for developing 
a specific WMP. 

 

2. LITERATURE REVIEW 

In this section, we present the scope and the results of our literature review. Please note that numerous 
research studies exist that focus on weight monitoring with various WIM technologies. Most of the literature 
centers around the use of WIM in pavement design, bridge design, asset management and load rating. As 
WIM technology and ICT systems have advanced, WIM applications have extended to commercial vehicle 
weight enforcement, and freight planning and logistics (NAS, 2020).  

2.1.Overall Scope of the Literature Review 

The literature review covers a wide range of topics related to weigh-in-motion (WIM) systems, including 
data analysis, new technologies, industry reports, technology reviews, integration with imaging, accuracy, 
and reliability, bridge WIM (BWIM), efficiency and impact, direct enforcement, piezoelectric sensors, 
calibration, and portable WIM systems. 



 

 

 
Figure 1 Distribution of publications by focus areas 

 

Focus area of the articles Count of Publications 

Data analysis 37 

New Technology 31 

Industry Report 25 

Technology Review 20 

Integration with Imaging 19 

Accuracy & Reliability 18 

BWIM 17 

Efficiency & Impact 11 

Direct enforcement 9 

Piezoelectric 9 

Calibration 5 

Portable WIM 3 

Grand Total 204 

 

2.2.Key Findings 

Our key findings from the literature review are as follows: 

• Data analysis: Most publications in this area focused on developing and evaluating new data 
analysis methods for WIM systems. This is an important area of research, as it is essential to be 
able to extract accurate and reliable data from WIM systems in order to use it effectively. 

• New technology: There is a growing interest in developing new WIM technologies, such as those 
that use video or radar to weigh vehicles. These technologies have the potential to improve the 
accuracy and efficiency of WIM systems. 

• Industry reports: Industry reports provide valuable insights into the current state of the WIM 
market and the challenges that need to be addressed. 

Data analysis

New Technology

Industry report

Technology review

Integration with 
Imaging

Accuracy & 
Reliability

BWIM

Efficiency & Impact

Direct enforcement

Piezoelectric
Calibration

Portable WIM
FOCUS AREAS



 

 

• Technology reviews: Technology reviews provide a comprehensive overview of the latest WIM 
technologies and their applications. 

• Integration with imaging: There is a growing trend towards integrating WIM systems with imaging 
systems. This allows for the collection of additional data about vehicles, such as their license 
plate numbers and vehicle types. 

• Accuracy and reliability: Accuracy and reliability are essential for WIM systems to be effective. 
The literature review includes a number of studies that have evaluated the accuracy and reliability 
of different WIM systems. 

• BWIM: Bridge-WIM systems are becoming increasingly popular, as they can be used to weigh 
vehicles without disrupting traffic flow. The literature review includes a number of studies that 
have evaluated the performance of BWIM systems. 

• Efficiency and impact: The literature review includes a number of studies that have evaluated the 
efficiency and impact of WIM systems. These studies have found that WIM systems can be 
effective in reducing overweight vehicles on the road and improving road safety. 

• Direct enforcement: Direct enforcement is a new trend in WIM technology. Direct enforcement 
systems use WIM data to automatically issue tickets to overweight vehicles. The literature review 
includes a number of studies that have evaluated the effectiveness of direct enforcement 
systems. 

• Piezoelectric: Piezoelectric sensors are the most common type of sensor used in WIM systems. 
The literature review includes a number of studies that have evaluated the performance of 
piezoelectric sensors in WIM systems. 

• Calibration: Calibration is essential for WIM systems to be accurate. The literature review 
includes a number of studies that have evaluated different calibration methods for WIM systems. 

• Portable WIMs: Portable WIM systems are becoming increasingly popular, as they can be used 
to collect WIM data at any location. The literature review includes a number of studies that have 
evaluated the performance of portable WIM systems. 

2.3.Literature Map 

Literature maps, as with the one shown in Figure 2, indicate connections that exist between authors and 
their published manuscripts. The nodes are the authors and the edges are connections between their 
publications. The size of a node indicates the number of citations, and the thickness of an edge represents 
the number of co-authored manuscripts. This map shows that some authors contribute more to the WIM 
topic than do others. The map also shows that there are different clusters of authors more closely connected 
to each other than they are to authors in other clusters. This helps us identify influential authors, research 
communities, and potential collaborators. It can also be used to track research development in a particular 
field over time. 
 
 



 

 

 
Figure 2 The map of published manuscripts on WIM Systems. 1 

 
 

 
1 An interactive version of the map is available here: https://app.litmaps.co/shared/074a8eb1-ac9e-490f-b48b-e13e5c62c997 

https://app.litmaps.co/shared/074a8eb1-ac9e-490f-b48b-e13e5c62c997


 

 

Figure 3 shows the number of publications on WIM systems by year. The number of publications has been 
increasing, with a particularly significant increase in recent years. 
 

 
Figure 3 Number of Journal Articles by Year 

 
There are a three main reasons for this increase in publications: 

• Growing awareness of the benefits of WIM systems: WIM systems can be used to improve 
road safety, reduce road damage, and enforce weight restrictions. As more and more people 
become aware of these benefits, there is a growing demand for WIM systems. This is leading to 
more research and development in the field, which is resulting in more publications. 

• Technological advancements: WIM technology has advanced significantly in recent years. New 
WIM technologies are more accurate, reliable, and affordable than older technologies. This is 
making WIM systems more attractive to users, which is further driving demand for WIM systems 
and research. 

• Expanding applications of WIM systems: WIM systems are now being used in a wider range of 
applications than ever before. For example, WIM systems are now being used to monitor traffic 
flow, collect data on vehicle weights, and enforce weight restrictions on bridges. This expansion 
of applications is also contributing to the increase in publications on WIM systems. 

Overall, the increase is a positive development. It shows a growing interest in WIM systems and that the 
technology is advancing rapidly. This should lead to even more benefits from WIM systems in the future. 

Table 1 shows a list of the top twenty journals that have published weigh-in-motion (WIM) papers. The most 
common journals are Sensors, Italian National Conference on Sensors, and Measurement. These journals 
are all focused on sensors and measurement technologies, which are essential for WIM systems. Other 
common journals include Electronics, Engineering Structures, and IEEE International Instrumentation and 
Measurement Technology Conference Proceedings. These journals are focused on electronics, engineering, 
and instrumentation, which are also important for WIM systems. The table also shows that WIM papers have 
been published in a variety of other journals, including: 



 

 

• Journals focused on transportation engineering, such as Transportation Research Record and 
Journal of Intelligent Transportation Systems. 

• Journals focused on civil engineering, such as Engineering Structures and Journal of Bridge 
Engineering. 

• Journals focused on materials science and engineering, such as IOP Conference Series: 
Materials Science and Engineering. 

• Journals focused on electrical engineering, such as IEEE Sensors Journal and Electronics. 

 
Table 1 Top 20 journals publishing WIM relevant articles 

Journal Published N 

Sensors 13 

Measurement 5 

Electronics 3 

Engineering Structures 3 

IEEE International Instrumentation and Measurement Technology Conference Proceedings 3 

IEEE Sensors Journal 3 

International Journal of Heavy Vehicle Systems 3 

IOP Conference Series: Materials Science and Engineering 3 

Journal of Bridge Engineering 3 

Journal of Civil Structural Health Monitoring 3 

Metrology and Measurement Systems 3 

Structural Control and Health Monitoring 3 

Applied Sciences 2 

Journal of Testing and Evaluation 2 

Remote. Sens. 2 

Smart Structures and Materials 2 

Structure and Infrastructure Engineering 2 

Transportation Research Procedia 2 

The diversity of journals shows that WIM systems 
are a topic of interest to researchers from a variety 
of different fields. It also suggests that WIM 
systems have a wide range of potential 
applications. Our findings shows that WIM 
systems are a well-established and active 
research area. There is a large body of published 
research on WIM systems, and this research is 
being published in a variety of different journals. 
This suggests that WIM systems have a bright 
future and that they will continue to play an 
important role in transportation engineering. 

Table 2 lists the top authors who have published 
weigh-in-motion (WIM) papers over the last five 
years. Most prolific is Birgin, who has published 
five WIM papers in the last five years. Gajda and 
Burnos are close behind, with four papers each. 
This shows that WIM research is a vibrant and active field with a large community of researchers who are 
dedicated to advancing the state of the art in WIM technology.  
 

 

 

First Author Number of Publications 

Birgin 5 

Gajda 4 

Burnos 4 

Jian 2 

Feng 2 

Dontu 2 

Chen 2 

Kawakatsu 2 

Sadeghi Kati 1 

 

Table 2 Authors over the last five years 



 

 

2.4.Initial Research  

The earliest investigation of WIM systems is Moses (1979). He presents the development and testing of a 
weigh-in-motion (WIM) system that uses instrumented bridge girders and timing information from tape 
switches to predict the axle and gross weight of trucks in motion. The system is based on the principle that 
a concentrated load moving across a bridge will induce stresses in proportion to the product of the influence 
value and the magnitude of the load. Moses tested the system on a three-span continuous beam-slab 
bridge and obtained promising results. The truck weight predictions were quite accurate, and the system 
was able to operate reliably in real-world conditions. Despite the initial tests' success, some challenges still 
need to be addressed before the system can be widely implemented. One challenge is the need for 
specialized equipment and expertise to install and operate the system. Another challenge is that the 
accuracy of the system depends on the quality of the bridge girders. 

Moses suggests that these challenges can be overcome by designing self-contained, stand-alone WIM 
units that can be easily transported and attached to bridges. He also suggests that further research is 
needed to develop methods for calibrating the system on different types of bridges. Overall, this paper 
presents a significant contribution to the field of WIM technology. Moses has demonstrated the feasibility 
of using instrumented bridge girders to weigh trucks in motion. Over four decades, WIM systems 
revolutionized the way that truck weights are measured and enforced. In addition to the traditional 
applications of truck weight enforcement and pavement monitoring, the WIM system has been used for a 
variety of other purposes as listed by Moses (1979): 

• Collecting data on truck traffic patterns and flows 

• Identifying bridges that are at risk of overload 

• Monitoring the condition of bridges over time 

• Developing new pavement design and maintenance strategies 

Since the publication of this paper, the benefits of WIM systems have become more evident. WIM systems 
are used to support freight planning and logistics by providing real-time information on the movement of 
goods through transportation networks. By automating the truck weight enforcement process, the system 
could help to improve safety and reduce the damage to roads and bridges caused by overloaded vehicles. 
The system could also help to improve the efficiency of transportation networks by providing real-time 
information on truck traffic patterns and flows. With further development, this system could have a 
significant impact on transportation safety, efficiency, and sustainability. 

2.5. Sensor Technology Review  

The ASTM E1318 standard for WIM systems classifies WIM systems according to the following four distinct 
types (Type I through Type IV), depending on the application and functional performance requirements:  

• Type I and Type II systems: Suitable for traffic data collection purposes, with Type I systems having 
slightly more stringent probability of conformance requirements. The vehicle speed range to meet 
functional performance requirements is 10 to 80 mi/h.  

• Type III systems: Suitable for screening vehicles suspected of weight limit or load limit violations 
and have stricter functional performance requirements than Type I and Type II systems. The vehicle 
speed range to meet functional performance requirements is 10 to 80 mi/h.  

• Type IV systems: Not approved for use in the United States but intended for use at weight 
enforcement stations. The vehicle speed range to meet functional performance requirements is 2 
to 10 mi/h. 

WIM technology has advanced considerably due to the advent of new sensor technology. There are three 
categories of WIM stations based on the speed of the vehicle: static, slow, and high-speed WIM. As the 
names suggest, they can measure the speed of the vehicle when they are stationary, moving slowly, or 
moving at their normal speed, respectively. WIM stations can also be permanent or temporary. One of the 
major components of the WIM system is its sensors. There are intrusive (piezoelectric sensor, bending 
plates, pneumatic road tube, indusctive loop) and non-intrusive devices (passive and active infrared 
microwave/radar, ultrasonic, magnetic, passive acoustic and image detection) used for the collection of 
count speed, class and WIM data (Skszek, 2001). These technologies use different types of techniques for 
measuring weights. Besides these types of sensors, the video camera is also used to capture important 
data like the class/type of the vehicle or number plate through image processing. Multiple cameras can be 
used to capture a moving vehicle’s trajectory and location through information fusion and motion fusion 



 

 

(Dan et al. 2019). Another technology uses a completely unique type of sensor compared to traditional 
sensors we have discussed so far. These sensors are based on micro-optical fibers. When the pressure 
on the fibers causes it to deform, then the loss of the light output inside the fiber optic helps us to measure 
the weight of the vehicle (Bin, M., &Xinguo, Z., 2010). To understand the different cost of the various WIM 
Technologies and sensors, we have performed some research on various WIM implementations and 
captured various information from the research. 

 
Table 3 Sensor Types 

Weight 
Sensor Type 

Image Description Advantages Disadvantages 

Bending plate 
sensor 

  

A weigh-in-motion 
(WIM) sensor that 
utilizes strain 
gages mounted to 
the underside of 
high-strength, 
rectangular steel 
plates called 
weigh pads. 

Durable, 
accurate, 
and can be 
used in a 
variety of 
traffic 
conditions. 

More expensive 
than other WIM 
sensor types 
and requires a 
dedicated 
installation. 

Load cell 
sensor 

 
  

A WIM sensor 
that uses load 
cells to measure 
the weight of 
vehicles. 

Highly 
accurate 
and durable, 
and can be 
used for 
weighing 
vehicles of 
all sizes and 
types. 

More expensive 
than other WIM 
sensor types 
and requires a 
reinforced 
concrete 
foundation. 

Piezoelectric 
sensor 

  

A WIM sensor 
that uses 
piezoelectric 
materials to 
generate a 
voltage in 
proportion to the 
applied force. 

Relatively 
inexpensive 
and easy to 
install, and 
can be used 
for vehicle 
classification 
and weight 
measureme
nt. 

Less accurate 
than bending 
plate and load 
cell sensors, and 
not suitable for 
static weight 
measurements. 



 

 

Weight 
Sensor Type 

Image Description Advantages Disadvantages 

Piezo-
ceramic 
sensor 

  

A type of 
piezoelectric 
sensor that uses 
ceramic powder to 
generate a 
voltage in 
proportion to the 
applied force. 

Relatively 
inexpensive 
and easy to 
install, and 
can be used 
for vehicle 
classification 
and weight 
measureme
nt. 

Less accurate 
than bending 
plate and load 
cell sensors, and 
not suitable for 
static weight 
measurements. 

Piezo-
polymer 
sensor 

 
  

A type of 
piezoelectric 
sensor that uses 
piezoelectric 
polymer material 
to generate a 
voltage in 
proportion to the 
applied force. 

Relatively 
inexpensive 
and easy to 
install, and 
can be used 
for vehicle 
classification
. 

Less accurate 
than bending 
plate and load 
cell sensors, and 
not suitable for 
static weight 
measurements. 

Piezo-quartz 
sensor 

  

A type of 
piezoelectric 
sensor that uses 
piezo-quartz 
material to 
generate a 
voltage in 
proportion to the 
applied force. 

Highly 
accurate 
and durable, 
and can be 
used for 
vehicle 
classification 
and weight 
measureme
nt. 

More expensive 
than other 
piezoelectric 
sensors. 

Strain gauge 
strip sensors 
(Intercomp) 

 
 

 

 

 

Strain gauges are 
thin, flexible 
sensors embedded 
within the strip that 
measure the 
amount of bending 
or deformation 
caused by the 
weight of a vehicle 
passing over. 
 

Offer a high 
degree of 
accuracy at 
high speeds. 
±0.5% to 
±1.0% of 
axle weight 

Performance 
can be slightly 
affected by 
extreme 
temperatures, 
moisture, and 
debris on the 
road surface. 



 

 

2.6. State of the Art and Development Trends 
 
Weigh-in-motion (WIM) sensors allow the control of vehicle weights without disruption of traffic. WIM 
systems bring very important savings by traffic monitoring and by reducing the number of overloaded 
vehicles. This paper discusses the present status and developmental trends of high-speed weigh-in-motion 
(HS-WIM) technologies. Both commercial and new types of WIM sensors are presented. Strengths and 
weaknesses of different type of WIM sensors are discussed, as well as the economic aspects of the different 
technologies. Possible future developments of WIM technologies concerning the measurement 
performance are also described. 
 
WIM data can also be used in estimating truck flows, locally and statewide. Stone et al. (2009) demonstrated 
for the first time that WIM data could be employed as inputs in developing a statewide truck flow model. It 
was the precursor to the current statewide freight model. Their work was based on earlier methodological 
work by List and Turnquist (1995), List et al. (2002) and Nozick, Turnquist and List (1996). In all these 
cases, observations of truck flows on network links, including data from WIM stations, were used as inputs 
in the flow matrix development process.  
 
WIM data have also been used to inform pavement design and investment decisions by NCDOT.    List, 
Stone, and Demers (2009) used WIM data to develop trip making profiles for various highway facilities 
statewide, especially the interstates and principle rural arterials. The strength of these estimates was 
predicated on the clustering analysis of Sayyady et al. (2011). The data were also used to examine 
placement strategies for WIM stations, as portrayed by the authors. These studies clearly show that WIM 
data have value for managing the integrity of the highway infrastructure, for making pavement investment 
and rehabilitation decisions, and for determining how to be cost-effective about determining where the best 
places are for having WIM stations.  
 
Refai et al. (2014) discusses the implementation of different types of WIM system and presents a portable 
WIM practice in Oklahoma, where they observe significant cost reductions compared to permanent WIM 
stations commonly used by the Federal Highway Administration (FHWA) and state DOTs. In a similar study 
conducted in Minnesota, Kwon (2012) evaluates the performance of weigh-pad-based portable WIM 
systems, reporting positive correlations between the portable and permanent systems in measuring the 
gross vehicle weight, speed, and axle specification data. More recently, Faruk et al. (2016) reported 87-
90% accuracy in collecting weight data through portable WIM stations in Texas, although NCDOT has not 
found this to be a defensible conclusion based on its own experimentation. 
 

2.7.Integrated Solutions 
 
Reliable and accurate monitoring of traffic loads is of significance for the operational management and 
safety assessment of bridges. Traditional WIM techniques can identify moving vehicles with satisfactory 
accuracy and stability, whereas the cost and construction-induced issues are inevitable. Xia et al. (2019) 
proposed a traffic sensing methodology, combining computer vision techniques and traditional strain-based 
instrumentation with extra focus on complicated traffic scenarios. Rather than a single sensor, a network of 
strain sensors of a pre-installed bridge structural health monitoring system is used to collect redundant 
information and hence improve the accuracy of identification results. Field tests were performed on a 
concrete box-girder bridge to investigate the reliability and accuracy of the method in practice.  
 
Dan, Ge, and Yan (2019) proposed a novel information fusion-based method for the identification of 
transverse and longitudinal loads on the full deck of bridges of different lengths. This method utilizes a 
pavement-based weigh-in-motion system (WIMs) at the bridge's entrance to obtain the weights of vehicles 
captured by cameras. Multiple cameras arranged along the bridge's length are used to acquire traffic flow 
videos, which are then processed to calculate the trajectories and locations of vehicles. The weight and 
location data are matched when the vehicle in the video crosses the piezoelectric sensor of the WIMs, 
which records the weight information at the same time. Since vehicles can be modeled as concentrated 
loads, the values and locations of all moving loads on the entire bridge can be identified in real-time. The 
reliability and accuracy of the proposed approach were verified using multi-view 3D simulation video data 
and field data from a ramp bridge. 
 



 

 

Ge et al. (2022) developed a random traffic flow load (TFL) simulation that integrates machine vision and 
weigh-in-motion (WIM) technology for bridge design and safety assessment. This system uses a deep 
learning method to accurately detect vehicles and wheels in video footage and extract key parameters for 
TFL modeling. Based on long-term monitoring data, statistical distributions of key parameters are 
determined, and an intelligent TFL model is derived from the Intelligent Driver Model (IDM) to consider 
vehicle car-following behavior. The paper also proposes a TFL simulation method that achieves accurate 
TFL simulation. A cable-stayed bridge was used to validate the feasibility of the proposed method. The 
results showed that, compared to modeling and simulation methods that rely only on WIM systems, the 
proposed method reduced the measurement error of vehicle dimensions by nearly four times and achieved 
higher resolution in time measurement. The proposed method effectively overcomes the shortcomings of 
existing schemes and has good application potential in engineering. 
 

Table 4 Sensor Types and AI Integration Capability 
Sensor type  AI Integration Infrastructure  Quality-accuracy  High/low speed  

Piezoelectric sensors 
(ceramic, 
 polymer and quartz) 

No Asphalt and 
concrete slab roads. 
Epoxy resin material 
reinforced by an 
aluminum support 

Error:  I (±7%) or 0 (±3%) 
 
GVW 95%: ±15% 

High Speed 

FAD sensors No one camera and 
eight sensor setups 

Error: 15% High Speed 

Strain transducers 
and tape switches 

An algorithm is 
presented which 
weighs each 
vehicle 
regardless of the 
presence of 
vehicles in other 
lanes. 

Reusable strain 
transducers and 
tape switches are 
mounted on bridges 
to provide a 
continuous and 
complete traffic and 
load picture. 

N/A High Speed 

Novel capacitive 
flexible weighing 
sensor constructed 
by rubber materials 

NA N/A The maximal error of 
vehicle's gross weight is 
±7.72% and average error 
is ±1.715%, whose 
accuracy surpasses error 
of gross weight is ±10% 
when confidence is 95% 

Low Speed 

Piezoelectric sensor 
with  
Video Cameras 

Yes N/A N/A High Speed 

Plate & Strip Sensors No External structures, 
either a road surface 
or a bridge, which is 
the physical 
framework. 

5% error High Speed 

Vehicle separator, 
weighing pad, axle 
identifier, induction 
coil sensors, video 
camera, and data 
processor. 

No  WIM systems and 
detection technology 
should be installed 
at freeway entrances 
to prevent access by 
severely overloaded 
trucks. 

error ≤2%. High Speed 

Graded index optical 
fiber 

No The weight sensor-
based micro bending 
graded index fiber. 

 0.55% error Static 

Sources: Jiang, X. et al.(2009), Hitchcock, W. et al.(2011), Moses, F. (1983), Cheng, L., Zhang, H., & Li, Q. (2007), 
Dan, D., Ge, L., & Yan, X. (2019), Oskarbski, J., &Kaszubowski, D. (2016), Huang, H. et. al. (2019), Faruk, et. 
al.(2016), Ula, R. K., &Hanto, D. (2017). 
 



 

 

 2.8 Applications of Artificial Intelligence for Weigh-in-motion 
 

An increasing global concern exists regarding overloaded vehicles causing damage to civil infrastructure. 
Traditional methods of vehicle weight measurement, like static weighing and pavement-based WIM, have 
limitations like time consumption, traffic disruptions, and high costs. Bridge WIM (B-WIM) systems, while 
different, still depend on extensive bridge sensor instrumentation and are costly. In contrast, Artificial 
Intelligence (AI) and, in particular, its sub-topic of Computer Vision (CV) offers technology at a low-cost, 
non-contact, and non-destructive alternative for WIM, with applications in structural health monitoring and 
vehicle mass estimation. 

Feng et al. (2020) discuss an innovative computer vision-based, non-contact vehicle weigh-in-motion 
(WIM) method. This method calculates the weight of vehicles, particularly heavy trucks, by analyzing tire 
deformation parameters like tire-roadway contact length and tire vertical deflection. It also uses tire 
pressure data from on-board sensors. Experiments with concrete trucks and an SUV demonstrated the 
accuracy of this method, suggesting its potential as a non-contact means for weighing vehicles in motion. 
This proof-of-concept study aims to show the feasibility and accuracy of the computer vision-based non-
contact WIM method. The document describes the methodology and presents experimental validation, 
highlighting the potential of this approach to revolutionize traditional static weighing and other WIM 
methods. 

In another study, Feng et al. (2020) describe developing and testing a computer vision-based non-contact 
weigh-in-motion (WIM) system for heavy vehicles, addressing the need for cost-effective monitoring to 
prevent infrastructure damage. The system calculates the force exerted by each tire on the road by 
measuring tire-road contact area and pressure. It uses computer vision to (1) measure tire deformation 
parameters, thereby estimating the contact area, and (2) recognize sidewall markings on the tire to 
determine the manufacturer-recommended tire pressure. The system, comprising a camera and software, 
employs techniques like edge detection and optical character recognition for accuracy. Field tests with 
concrete trucks showed that the system's weight estimates closely matched those obtained by static 
weighing. This novel application of computer vision technology, which does not require sensor installation 
on roads or vehicles, demonstrates potential for widespread implementation due to its cost-effectiveness 
and non-contact nature. 

Wang et al. (2023) outline a novel method combining machine vision and a BP (Back Propagation) neural 
network for identifying vehicle loads on orthotropic deck steel box girder bridges. The process involves 
two main steps: 

1. Vehicle Detection and Parameter Identification: Initially, dynamic object detection technology is 
used to detect vehicles. Then, image processing technology identifies the vehicle's spatiotemporal 
parameters, such as transverse position, speed, number of axles, and wheelbase. 

2. Strain Response Signal Measurement and Neural Network Analysis: The longitudinal strain 
response signal of the bridge's U-rib is measured. This data, combined with the spatiotemporal 
parameters, is used to establish a BP neural network model. This model is designed to identify the 
vehicle’s axle load and total weight. 

The effectiveness and anti-noise performance of this method were validated through a numerical 
simulation and an experimental test with a vehicle crossing a steel box girder bridge. The results 
demonstrated high accuracy and robustness against noise. The identification errors for vehicle 
spatiotemporal parameters were below 2.5%, the total weight error was no more than 3%, and axle load 
errors were within 5%. This indicates the proposed method's potential for accurate and efficient vehicle 
load monitoring on bridges. 

Zhu et al. (2021) discuss the importance of accurately determining vehicle loads for bridge design, 
assessment, and maintenance, and introduces a new method for obtaining precise vehicle weight and 
spatiotemporal information using computer vision. The proposed method involves use of WIM Technology: 
While vehicle weight can be obtained using Weigh-in-Motion (WIM) technology, current methods for 
gathering comprehensive vehicle information have limitations in accuracy. To overcome these limitations, 
the paper proposes a more accurate method that uses computer vision to reconstruct a 3D bounding box 
of the vehicle. This involves: 



 

 

• Utilizing a deep convolutional neural network (DCNN) and the "You Only Look Once" (YOLO) 
detector to detect vehicles and obtain a 2D bounding box. 

• Establishing a relationship between the 2D and 3D bounding boxes to reconstruct a 3D model of 
the vehicle, providing detailed sizes and positions. 

• Spatiotemporal Information Acquisition: The method includes the use of multiple object tracking 
(MOT) to gather spatiotemporal information about vehicle loads. 

• Validation and Testing: A Bridge Vehicle Loads Identification System (BVLIS) was developed and 
tested on a cable-stayed bridge in operation to validate the approach. The testing confirmed that 
the method is accurate and reliable. 

The approach in this paper can be used to obtain detailed vehicle information and provide load boundary 
conditions for finite element modeling of bridges. Zhou et al. (2020) propose a new, low-cost, non-contact 
vehicle identification method for assessing vehicle loads on bridges, addressing the limitations of the costly 
bridge weigh-in-motion (BWIM) system. The key points of this method are: 

• Machine Vision and Deep Learning: The method uses machine vision technology and deep 
learning algorithms to distinguish a vehicle and its load.  

• Vehicle Information Gathering: Vehicle data (type, weight, position, motion trajectory, etc.) is 
obtained from roadside monitoring surveillance cameras. 

• Statistical Analysis: Axle-weight distribution intervals for nine classified vehicle types are derived 
from statistical data of 8,402 delivery vehicles, establishing a relationship between vehicle types 
and their corresponding weight information. 

• Deep Convolutional Neural Network (DCNN) Training: A dataset containing 8,624 vehicle images 
was used to train the DCNN. Nine rough-grained vehicle classifications were included to enhance 
the network's generalizability. Optimization analysis improved the accuracy of vehicle type 
identification. 

• Faster Region-Based Convolutional Neural Network (Faster R-CNN): This network effectively 
detects vehicle positions and utilizes a pre-trained DCNN with 98.17% accuracy in vehicle type 
classification as a co-shared network layer for increased computational efficiency. 

• Real-Time Tracking and GUI Integration: The Faster R-CNN, combined with a Kalman filter, allows 
real-time tracking of moving vehicles through monitoring videos. A graphical user interface (GUI) 
is incorporated into the video camera for automatic identification. 

• Post-Processing and Field Testing: A post-processing module based on this method was 
established, and a field test was conducted to validate the system's reliability. 

The paper presents a novel approach for accurately identifying and tracking vehicle loads on bridges using 
advanced machine vision and deep learning techniques, offering a cost-effective alternative to traditional 
BWIM systems. Ge et al. (2020) focuses on improving traffic load monitoring (TLM) technology for bridge 
health monitoring and safety early warning. The key aspects of the paper are: 

• Combining WIMs with Machine Vision: The study integrates weigh-in-motion systems (WIMs) with 
machine vision to develop a comprehensive TLM technology for monitoring the entire bridge deck. 

• Challenges with Existing TLM Methods: Current TLM methods struggle to simultaneously achieve 
real-time processing, high accuracy, and robustness to changing lighting conditions. 

• Improved Full-Bridge TLM Method: The paper proposes an enhanced TLM method using the 
YOLO-v3 convolutional neural network. The method focuses on: 

o Training a dual-target detection model to identify entire vehicle profiles and their tails, 
marking them with compact rectangular boxes. 

o Developing an optical geometry model based on the corner points of these boxes to 
measure vehicle dimensions and correct vehicle centroids for more accurate location 
estimation. 

• Real-Time Accurate Traffic Load Distribution Identification: By synchronizing the timing of cameras 
and WIMs, each load measured is matched with the corresponding vehicle “pixel cluster” detected 
in video footage. This allows for the accurate, real-time identification of traffic load distribution 
across the bridge deck. 

• Field Test Verification: The method was tested on a ramp bridge and demonstrated improved 
accuracy in vehicle location identification, better adaptability to lighting changes, and faster 
calculation speed. 



 

 

• Suitability for Field Monitoring: The proposed method successfully meets the requirements for field 
monitoring of traffic load distribution, proving significant for bridge health monitoring and safety 
early warning systems. 

The paper presents an innovative approach to traffic load monitoring on bridges, enhancing accuracy, 
real-time processing, and lighting condition adaptability, which are crucial for effective bridge health 
monitoring and safety. Dan et al. (2019) address the challenge of accurately identifying both transverse 
and longitudinal moving loads on the entire deck of bridges, which is crucial for effective bridge health 
monitoring. The key points of the proposed method are: 

• Information-Fusion-Based Method: The paper introduces a method that combines different data 
sources for load identification on bridges of various lengths. 

• Use of Pavement-Based WIMs: Weigh-in-motion systems (WIMs) installed at the bridge's entrance 
capture the weight of vehicles. This data is one part of the information-fusion approach. 

• Video Analysis with Multiple Cameras: Multiple cameras along the bridge capture videos of traffic 
flow. These videos are used to calculate each vehicle's trajectory and location. 

• Data Matching and Load Identification: The weight data from the WIMs and the location data from 
the videos are matched in real-time when a vehicle crosses the WIMs' piezoelectric sensor. This 
synchronization allows for the identification of both the values and locations of all moving loads 
across the entire bridge deck. 

• Real-Time Processing and Concentrated Loads: The system processes the data in real-time and 
treats vehicles as equivalent to concentrated loads, enhancing the accuracy of load distribution 
analysis. 

• Verification and Accuracy: The reliability and accuracy of this method were verified using multi-view 
3D simulation video data and field data from a ramp bridge. 

This research paper presents a novel approach for the simultaneous identification of transverse and 
longitudinal loads on the full deck of bridges. By integrating pavement-based WIMs and video analysis, 
the method achieves real-time, accurate monitoring of moving loads, contributing significantly to the field 
of bridge health monitoring. 

Kong et al. (2022) outline a study on a new non-contact method for identifying vehicle weight, addressing 
the issue of vehicle overloading, which damages roads and bridges and can lead to traffic accidents. The 
key elements of their method are: 

• Problem of Vehicle Overloading: Overloaded vehicles are a common problem, causing significant 
damage to transportation infrastructure and increasing the risk of accidents. 

• Limitations of Current Weighing Methods: Traditional vehicle weighing methods like static weighing, 
pavement weigh-in-motion (PWIM), and bridge weigh-in-motion (BWIM) are contact technologies. 
They have drawbacks such as complex installation, poor durability, short service life, and high 
maintenance costs. 

• Proposed Non-Contact Method: The study proposes a non-contact vehicle weight identification 
method that does not require sensors or scales on or under roads and bridges. 

• Tire-Road Contact Model and Computer Vision: The method is based on the Hertz contact theory, 
deriving a tire-road contact model that relates tire vertical force to tire deformation. Computer vision 
techniques, including image segmentation and character recognition, are used to identify tire 
deformation and inflation pressure. 

• Application of the Theoretical Model: These measurements are combined with the theoretical 
model to determine the tire's vertical force and, consequently, the vehicle's weight. 

• Field Testing and Results: The method was tested in the field on passenger cars and trucks. The 
results show that it outperforms existing methods in the literature, demonstrating high accuracy and 
robust performance under various conditions, including different inflation pressures, vehicle 
weights, motion states, and tire types. 

The study introduces a novel, non-contact method for vehicle weight identification using a combination of 
a theoretical tire-road contact model and advanced computer vision techniques, showing promise for 
improved management of vehicle overloading and aiding in transportation infrastructure design and 
maintenance. A more recent study by Zhang et al. (2023) proposes a computer vision (CV)-based method 
for vehicle weight measurement, and the factors affecting its accuracy are analyzed by the researchers. 
The key aspects of this method and study are: 



 

 

• CV-Based Weight Measurement Process: The method involves capturing tire images, processing 
them to extract tire edges, calculating vertical tire deformations, determining actual tire pressures, 
and using a tire mechanics model to calculate the weight of each tire and the gross vehicle weight. 

• Analysis of Factors Affecting Accuracy: Parametric studies were conducted to understand how 
various factors impact measurement accuracy. These factors include the distance between the 
camera and the tire, camera parameters, illumination, background contrast, and vehicle speed. 

• Results of the Study: The study found that high accuracy in weight measurement is achievable 
under optimal conditions. These include a short distance between the camera and the tire, suitable 
camera settings, normal illumination levels, a distinct contrast between tires and their background, 
and low vehicle speeds. 

• Comparative Accuracy and Application: In practical applications, the identification error of the gross 
vehicle weight is within 15% at a 95% confidence interval. This level of accuracy is comparable to 
that of traditional weigh-in-motion systems. 

The study presents a promising non-contact method for vehicle weight measurement using computer 
vision. It demonstrates that while several factors can influence the accuracy of this method, under optimal 
conditions, it can achieve accuracy comparable to traditional systems, offering a potential alternative for 
traffic data collection and infrastructure safety assessment. 

The swift and precise determination of vehicle weight is crucial for managing and controlling vehicle 
overload, as well as for assessing road and bridge usage. The Bridge Weigh-in-Motion (BWIM) technique, 
when integrated with camera systems, has become increasingly popular in traffic load monitoring. BWIM 
is utilized for acquiring vehicle load data, while cameras are employed to ascertain the temporal and spatial 
distribution of vehicle loads on bridges. In recent years, various scholars have also incorporated computer 
vision (CV) techniques in the identification of vehicle weight parameters. 

The summary of non-contact Bridge Weigh-in-Motion (BWIM) methods and their applications is as follows: 

• Non-Contact BWIM Methods: This method measures vehicle weights using bridges without the 
need for installing sensors on the bridge. It offers the advantages of easy installation without traffic 
disruption, no road damage, and allows for real-time, fast weighing. 

• Computer Vision (CV)-Based BWIM Methods: Ojio et al. proposed a CV-based non-contact BWIM 
method using two cameras, one for measuring sub-millimeter bridge deflections and the other for 
monitoring traffic and determining axle spacing. Ding et al. developed a system for vehicle load and 
load centroid measurement based on CV and the vehicle's vertical displacement. The vehicle load 
is determined using parameters resolved from the vertical distance recognized by a side camera. 
Chen et al. presented a method for identifying the temporal and spatial distribution of vehicle loads 
on long-span bridges, using BWIM for weight information and CV techniques for tracking vehicle 
loads. The effectiveness and accuracy of these methods were verified by field tests. 

• Additional Research and Methods: Micu et al. used adaptive thresholding and morphological 
reconstruction methods to extract vehicle length from traffic videos, correlating it with weight 
measured by the BWIM system. Zhou et al. categorized a vehicle database into nine types of axle 
weight distribution intervals, establishing a link between vehicle types and weight. They used a 
deep convolutional neural network (DCNN) for accurate vehicle type identification and 
corresponding weight determination. Dan et al. proposed an information fusion-based method for 
load identification on bridges of varying lengths, using pavement-based WIMs at bridge entrances 
to measure vehicle weight and multiple cameras along the bridge to calculate vehicle trajectory and 
location. 

Various scholarly efforts to identify vehicle weight parameters by focusing on vehicle tires, using computer 
vision (CV) techniques and theoretical models were reviewed. The key points include: 

• CV-Based Vehicle WIM Method: CV-based vehicle weigh-in-motion (WIM) method calculates the 
tire-roadway contact force as the product of contact pressure and area. The contact area is 
estimated by measuring tire deformation parameters like tire-roadway contact length and tire 
vertical deflection using CV techniques, while tire pressure data is obtained from onboard sensors. 

• Enhancement with Edge Detection and OCR Technology: Feng et al. also applied edge detection 
and optical character recognition (OCR) to identify marking texts on tire sidewalls. This allowed 
them to find the manufacturer-recommended tire inflation pressure and obtain information like the 
tire brand, model, and size. 



 

 

• Non-Contact Vehicle Weight Identification Method: A new non-contact method for vehicle weight 
identification is based on a tire-road contact model and CV techniques. The theoretical tire-road 
contact model they used was based on an improved Hertz contact theory. 

• Identification of Tire Deformation and Inflation Pressure: CV techniques, such as image 
segmentation and character recognition, were used for identifying tire deformation and inflation 
pressure. 

• Field Experiments and Verification: Kong et al.(2022) analyzed the tire-road contact mechanism 
and conducted numerical analyses to develop tire contact force equations. The methodology for 
identifying the tire-road contact force by combining these equations and CV techniques was verified 
with field experiments on passenger cars and trucks, showing good agreement with measured 
results. 

Compared to traditional methods, the developed method based on tire mechanics and CV offers high 
accuracy and efficiency, easy operation, low cost, and does not require the placement of sensors, providing 
a new approach to vehicle weighing. In summary, these studies demonstrate significant advancements in 
vehicle weight identification using CV techniques, focusing on tire mechanics and the tire-road contact 
model, offering a more accurate, efficient, and cost-effective alternative to traditional methods. These 
studies demonstrate various advancements in non-contact BWIM and CV techniques for accurate and 
efficient vehicle weight measurement and load identification on bridges. 

 

2.9. Safety and Enforcement Review 

The use of weigh-in-motion sensors is now being expanded for enforcement purposes to provide virtual 
weigh stations for screening vehicles in traffic streams for overweight violations. Nichols & Bullock (2004) 
found that static weigh stations in Indiana were effective for identifying safety violations, but ineffective for 
identifying overweight vehicles. It was also determined that the alternative approach to identifying 
overweight vehicles using virtual weigh stations requires a high level of WIM data accuracy and reliability 
that can only be attained with a rigorous quality control program. 

Overloaded trucks pose serious threats to road transport operations with increased risks for road users, 
deterioration of road safety, and severe impact on the durability of infrastructure. An overloaded vehicle is 
more likely to be involved in an accident and have more severe consequences than a legally loaded vehicle.  
Overloading also means violation of the taxation rules, such as vehicle registration fees, axle taxes, and 
toll infrastructure fees.  It is, therefore, necessary to enforce vehicle weight and dimension regulations to 
minimize the number of overloaded and oversized vehicles. For protecting infrastructure and improving 
road safety approaches, WIM system implementation has been proven to be a trending approach 
worldwide. 

Rising truck traffic volumes are increasing the strain on roads and transportation infrastructure. Highway 
owners and operators must prioritize sustainable management of road use and respond by taking action to 
prevent road damage and ensure safety. WIM systems collect critical information from vehicles traveling at 
widely varying speeds. Using accurate measurement data, stakeholders can monitor traffic in real-time and 
collect vehicle data (such as a number of axles, weight per axle, or axle distance). The WIM system for 
weight-based tolling helps to generate additional revenue for road construction and ensures that road usage 
fees are fair. Aided by these accurate and reliable systems, road owners and operators can sanction weight 
limit violations immediately. WIM systems use can use integrated cameras to identify vehicles directly, so 
tolls can be levied automatically without hindering traffic flow. 

The development of advanced vehicle monitoring systems—either on-board or on the road—as part of 
intelligent transport systems, offers important potential and alternative solutions to traditional roadside 
enforcement by compliance officers. Traditionally, static weighing was the only method approved by the 
legal metrology up until the mid-1990s. Weighbridges, along with wheel and axle scales, are used to 
measure gross vehicle weight and wheel or axle load. Static weighing suffers from some limitations: it 
requires staff and time to perform static weighing. Staff is needed to select and intercept vehicles in the 
traffic flow, to perform the weighing operation on the static control area, and to fine the violators and apply 
other penalties as needed. 

Low Speed WIMs are the most accurate technology. They use  wheel or axle scales, mainly equipped with 
load cells, installed in concrete or strong asphalt platforms of at least 30 to 40 meters in length. The software 
of the data acquisition and processing system is designed to analyze the signal of the loadcells, considering 



 

 

the speed, and to accurately calculate the wheel or axle loads. Such systems are installed either outside 
the traffic lanes, on weighing areas, or in toll gates or any other controlled area. The operating speed is 
generally in the range of 5 to 15 km/h and accuracy is 3 to 5 % (Jacob, B., 2010) 

Considering the 600,000+ bridges and 4+ million miles of roadways across the entire nation, preventing 
overloading from overweight trucks, i.e. effective automated enforcement becomes the most critical 
implementation of an advanced WIM system. Burnos et al. (2021) introduces WIM systems for direct 
enforcement (e-WIM) and presents practical aspects related to the identification of factors disturbing 
measurement in WIM systems as well as methods of controlling, improving and stabilizing the accuracy of 
weighing results.  

Overweight trucks cause significant damage to roads and bridges, which can lead to shorter lifespans, 
increased maintenance costs, and safety hazards. The cost of repairing and replacing damaged 
infrastructure is often borne by taxpayers. However, in some jurisdictions, transportation agencies issue 
permits to overweight trucks in exchange for a fee. The goal of these permit fees is to offset the cost of the 
damage caused by these vehicles. A recent study by Nassif et al. (2023) found that New Jersey's current 
permit fee schedule for overweight trucks is able to recoup the cost of the damage caused by these vehicles. 
However, this is not the case in all states. According to the study, New Jersey ranks fourth highest among 
all states in terms of permit fees for overweight trucks. The study also found that the infrastructure damage 
cost for bridges and pavement were about 37% and 63% of the total damage cost due to the overweight 
permit trucks, respectively. The total damage attributed to bridge structures was $1.7 million per year, while 
the damage cost to pavement was $2.9 million per year. 

The findings of this and similar studies suggest that other states should consider updating their permit fee 
schedules to reflect the true cost of the damage caused by overweight trucks. This would help to ensure 
that taxpayers are not subsidizing the use of overweight vehicles, and that transportation agencies have 
the resources they need to maintain and improve their infrastructure. In addition to updating permit fee 
schedules, states could also consider other measures to reduce the damage caused by overweight trucks, 
such as: 

• Increasing enforcement of weight limits 

• Investing in new technologies to weigh trucks in real time 

• Developing alternative routes for overweight vehicles 

• Promoting the use of lighter-weight materials in truck construction 

By taking these steps, states can help to protect their infrastructure and improve safety for all road users. 
The following recommendations are made to transportation agencies and other stakeholders: 

• Transportation agencies should review their current permit fee schedules for overweight trucks to 
ensure that they are adequate to offset the cost of the damage caused by these vehicles. 

• Transportation agencies should invest in new technologies to weigh trucks in real time. This would 
help to identify and apprehend overweight vehicles before they can cause damage to infrastructure. 

• Transportation agencies should develop alternative routes for overweight vehicles. This would help 
to reduce the wear and tear on heavily trafficked roads and bridges. 

• Transportation agencies should promote the use of lighter-weight materials in truck 
construction. This would help to reduce the damage caused by overweight vehicles. 

These recommendations are intended to help transportation agencies protect their infrastructure and 
improve safety for all road users. 

2.10. Data Quality and Accuracy 

Several studies in the literature discuss the quality of weigh-in-motion (WIM) data for a variety of 
transportation applications, including pavement design, weight enforcement, and freight planning in 
different states. Several factors and conditions affect the WIM system accuracy. The potential site-related 
factors include road geometry, pavement stiffness, pavement surface distresses, road roughness, and 
climate. The WIM calibration and equipment-related factors may include sensor type and array, calibration 
speed and speed points, and sensors’ age. The WIM data for Long-Term Pavement Performance (LTPP) 
research-quality sites were considered by Haider et al., (2020) to estimate benchmark accuracies for 
different sensors and evaluate the effects of different factors on WIM measurement errors. These are the 
35 sites with WIM calibration data that meet the ASTM E1318-09 error tolerances for Type I WIM systems 
and are consistently calibrated using the LTPP protocol with a complete set of supporting data about WIM 



 

 

site performance and WIM site conditions. The data for the LTPP research-quality sites showed that for the 
sensor arrays utilized, the best achievable total errors based on GVW are +- 5% for load cell (LC),+- 9% 
for bending plate (BP), and +-9.8% for the quartz piezo (QP) sensors. These accuracy levels for different 
sensor types provide highway agencies with benchmark values demonstrating the practically achievable 
accuracy of WIM measurements after calibration for different WIM sensor types. Based on available data, 
WIM sensor accuracy can be significantly affected by climate, especially for QP and polymer piezo sensors. 
Also, the longitudinal roadway slope at a WIM site, sensor array, and speed points may significantly affect 
the WIM system accuracy. 

For North Carolina, Ramachandran (2009) describes a quality control procedure for WIM data that identifies 
incomplete datasets, out-of-range values, and other potential problems. He reports that the NCDOT WIM 
data is reliable, with only 0.97% and 6.42% anomalies for vehicle class and weight, respectively. The 
authors analyze truck traffic profiles in NC urban and rural roads. He finds that the class 5 and 9 gross 
vehicle weight (GVW) plots for all categories of WIM stations show expected trends. This information can be 
used by highway planners and pavement designers to quickly determine typical truck traffic profiles in the 
various NC regions and to gain insight into NC truck transportation flows. 

In a follow-up study, Ramachandran et al. (2011) compared the WIM quality control methods used by the 
North Carolina State University (NCSU)/NCDOT and the University of Arkansas (UARK). He finds that the 
UARK Pavement Designer software has better mapping functions and supports data analysis and 
design, but it is a "black box" from a WIM data analyst's perspective. The NCSU/NCDOT approach, on the 
other hand, provides more flexibility and manual override capability, which is important for ensuring data 
accuracy. Ramachandran et al. (2011) also propose a new calibration algorithm that they believe can 
significantly increase the accuracy of vehicle weighing in WIM systems. 

In a more recent study, Lin et al. (2022) report a spatiotemporal analysis by utilizing the spatial analysis 
function of a geographic information system. In addition, the weight of the overloaded vehicles was 
calculated using the overload rate. Furthermore, the clustering and concentration of the overloaded vehicles 
were obtained using the global spatial autocorrelation model. The kernel density estimation method was 
then used to identify areas with severe overloading and calculate the local probability of overloading in that 
area. The results revealed that the spatial distribution of the overloading severity was mainly influenced by 
the per capita income, density of highways, industry type, and freight policy in a given region, and that it 
was mainly concentrated in transportation hubs and areas with high traffic and complex logistics (e.g., 
municipal and provincial boundaries). Finally, the temporal aggregation of overloading was primarily 
affected by the level of law enforcement and freight policy because vehicles with high overload rates were 
mainly concentrated between 12:00 and 4:00 a.m. 

Another trending method, proposed by Tahaei et al. (2021), involves using machine learning for Truck 
Traffic Classification groups from Weigh-in-Motion data. The pavement Mechanistic-Empirical (ME) design 
requires high-dimensional traffic feature inputs by categories, including Vehicle Class Distributions (VCD), 
Monthly Distribution Factors (MDF), Hourly Distribution Factors (HDF), and Normalized Axles Load Spectra 
(NALS). In simplifying the Pavement ME design practice, Truck Traffic Classification (TTC) groups are 
commonly used for characterizing traffic inputs. Thus, properly defining TTC groups is critical for state-
specific pavement ME design practice. In this study, the truck traffic data from existing Weight-in-Motion 
(WIM) stations were mined to develop specific TTC groups to assist with pavement ME design practice in 
Georgia. An effective data analytics procedure was developed by leveraging unsupervised machine 
learning techniques to reduce the high-dimensional traffic features by stratified Principal Component 
Analysis (PCA), followed by K-means clustering to establish appropriate TTC groups. For a case study, the 
performance of two typical designs was evaluated using the AASHTOWare pavement mechanistic-
empirical (ME) design software with respect to two scenarios of traffic inputs: (1) the derived cluster-based 
groups, and (2) the national default TTC groups. The results indicated that direct application of the national 
default TTC groups resulted in over-design of pavement structure in Georgia. Therefore, it is highly 
recommended that customized TTC groups should be developed using state-specific WIM data. 

Despite all the advancements, traditional weigh-in-motion (WIM) systems still report that a significant 
portion of vehicles cannot be classified due to reasons such as tailgating, lane changing, traffic congestion, 
and equipment malfunction. Analysis of unclassified vehicles was performed with WIM-recorded data. Peng 
et al., (2021) proposed a neural network model to determine the appropriate allocations of unclassified 
vehicles to vehicle classes. Since the number of unclassified vehicles is often fairly high, the allocations will 
help to improve the accuracy of truck traffic data and thus improve pavement design. Video records of traffic 
streams on an interstate section and traffic data from a nearby WIM station were used to identify causes 



 

 

for vehicle misclassifications. The optimal model was developed through model algorithm design, data 
processing, model training, validation, robustness analysis, and verification of video records, and proven to 
be useful tool for properly classifying the unclassified vehicles; potentially increasing benefits and reducing 
the costs. 

Haugen et al. (2016) describe the Norwegian Public Roads Administration's efforts to improve the quality 
of statistic weigh data. A key component of this project is the field testing of various Weigh-In-Motion (WIM) 
data collection techniques and equipment, including high-speed WIM equipment and V2I communication, 
in which the vehicle reports its own weight. The tests focus on data quality (WIM vs. static weight), user 
interface and usability, calibration procedures and requirements, and sensor lifetime. Another important 
aspect of the project is the use of WIM data to pre-select vehicles at control stations. WIM data is combined 
with license plate numbers from ANPR cameras, and the measured weight is compared to the permitted 
weight. If a vehicle is overloaded, a warning is displayed at the control station, allowing legal drivers to pass 
without being stopped. The authors conducted a series of tests over a three-year period, evaluating two 
distinct WIM sensor technologies from four different manufacturers. The tests focused on accuracy, sensor 
lifetime, calibration, and software and equipment usability. Additionally, the authors tested high-speed WIM 
equipment for pre-selecting vehicles at control stations. The results showed that lineas quartz sensors 
outperformed piezo electric cables. Calibration procedures were time-consuming and expensive, and 
sensor lifetime was very short. Deeper installation where possible can improve this. A significant challenge 
is the decrease in sensor accuracy over time. For one system, the average gross weight error increased to 
approximately 15% over a six-month period. The error in the other system increased to 15% in three 
months, and to 15% again in just over one month after calibration. 

In February 2015, a full-scale, proof-of-concept V2I system was tested in Oslo as. A single instrumented 
vehicle was used to test the communication protocols. The information flow was consistent, so the focus 
shifted to the reported weight. The internal difference in the self-declared truck weight for each axle was 
minimal, with less than 1% variation between test runs. Compared to the static weight, the self-declared 
truck weight was approximately 5% too low. This was considered a promising start for the concept. 

Full-scale tests with four vehicles are scheduled to begin in September. The trucks will be equipped with 
communication units to share their current weight for a two-month period. This configuration will provide a 
broader foundation for evaluating the system's data quality. The authors believe that WIM systems will be 
used in conjunction with V2I solutions in the future, which will further enhance vehicle weight control. 

 

3. STAKEHOLDER PERCEPTIONS OF A WIM PROGRAM 

This section reports an assessment of the needs of different stakeholders and how they use weigh-in-
motion data. A survey was conducted of departments of transportation (DOTs), a survey of primary 
stakeholders, and a survey of enforcement personnel. Interviews with selected vendors are also used for 
case examples.  Based on the feedback received on the pilot survey analysis, multiple surveys were 
designed to generate results and findings that are applicable to the following categories of participants 

1) WIM System owners and data collectors (e.g. state DOTs, counties, municipalities, etc.) 
2) First Tier WIM Data Users (i.e. organizations that have to use or report WIM data) 
3) Second Tier WIM Data Users (i.e. organizations that would benefit from using WIM data) 
4) WIM providers and others. 

These four different participants received the following surveys: 

1. DOT Survey 
2. Primary stakeholder survey 
3. Enforcement survey 
4. Vendor Survey 

3.1.Analysis of the DOT Survey 

The DOT survey was sent to all 50 state DOTs in the United States, with response rate of was 70%, with 
35 of the 50 DOTs responding. The DOT survey asked about WIM Availability and Responders Experience 
(9 Questions), Vendor information (2 Questions), WIM data (10 Questions), WIM Sensor Characteristics (6 
Questions), WIM System Costs (10 Questions), and the Future WIM Technology (6 Questions). 



 

 

The following analysis is based on the DOT survey responses: 

• 32 DOTs (91% of the responding state DOTs) collect or have collected WIM data. 

• The number of reported active WIM stations varies widely from state to state, with maximum of 44, 
average of 19.1 and median of 16 WIM stations. 

• The average number of down, inactive or idle WIM stations reported is 8, and the average number 
of portable WIM stations is reported to be 4. 

• 2020 NCHRC Synthesis survey indicated that more DOTs are contracting for maintenance and 
calibration services for WIM systems and considering pay-for-data solutions. However, our results 
show that DOTs are gaining capability in WIM system calibration, data processing and reporting.  

o The most common procurement model for WIM system installation and repair/replacement 
is 100% Vendor-managed (16 states), whereas only 7 states are relying on vendors for 
data processing. Namely, GA, IL, and WI DOTs have reported a 100% vendor-managed 
procurement model for all functions of the WIM system (installation, calibration, 
repair/replacement, data processing, reporting, and QA/QC). 

o Six states (AR, NC, WA, IA, MN, VT) reported 100% in-house capability for WIM system 
installation, calibration, repair/replacement, data processing, reporting, and QA/QC. 
 

o 11 state DOTs reported partially outsourced procurement models for installation, 7 for 
calibration and maintenance, 9 for repair and replacement, 10 for data processing, 6 for 
reporting, and 9 for QA/QC functions. 

• On average 7 full-time DOT personnel are allocated to manage WIM systems across 26 states. 
The average number of full-time personnel allocated for WIM system maintenance is 2.5 per state 
DOT. WIM personnel is hosted in transportation planning (9), data collection/IT (10) or enforcement 
(7) departments or divisions. 

• 68% of the survey participants expressed their expertise in data analysis, WIM systems and 
transportation planning. Only 2% identified themselves as bridge or pavement designers. 

• 25 state DOTs reported to have high-speed WIM systems, 6 states reported to have low-speed 
WIM system and 3 states reported to have portable WIM systems. 

• 13 state DOTs reported to have virtual weigh stations, 8 states reported tire safety screenings, 3 
states (NC, WI, MO) reported automated weight enforcement, 2 states (NC, AZ) reported mobile 
speed enforcement, 3 states (NC, AZ, IL) reported industrial truck weighing, 3 states (NC, MO, VT) 
reported bridge protection, 12 states reported prescreening programs currently in place. 

• A majority of the states are working with major vendors (17 states reported doing the work in-house) 

• Average procurement lead time for WIM sensors and roadside equipment is reported to be 8 weeks 
(about 10 weeks for IRD and 7 weeks for Kistler) 

WIM Data  

• The top three WIM system installation purposes were 1) data analysis, 2) pavement design and 
maintenance, and 3) transportation planning. Law enforcement was selected by 15 states. 74% of 
the respondents indicated that WIM data was most useful for design and enforcement. The least 
valuable uses were for the design of ports, terminals, and airports and safety assessment. 

• 11 states reported use of WIM data for bridge design, which is a significant increase compared to 
two states reported in 2020 NCHRP Synthesis Survey.  

• Eight states (FL, IN, MN, WA, WI, GA, IL, SC) allow users to access WIM data through dashboard, 
while 21 other state agencies have various access formats. 

• 52.94% of the WIM systems push data daily and38.24% of them push data continuously. Only a 
small number of systems push data annually, monthly, or weekly (2.94% each). 

• 30% of the respondents indicate that the WIM stations are physically reviewed for data accuracy 
daily, 27.3% reports annually (27.3%) or weekly (15.2%). A small number of stations are physically 
reviewed monthly (21.2%) or quarterly (6.1%). 

• In parallel with the 2020 NCHRC Synthesis study, our survey indicates  that many DOTs are looking 
for ways to optimize WIM calibration. We found that almost half of the responding states had 
optimized their process. 17 respondents (47.2%) currently have auto-calibration capability. 28% do 
not have auto-calibration and indicate that they do not need it. 25% would like auto-calibration. 

• 55% of the respondents reported having real-time data reporting capability. 42% would like to have 
automated data polling and automated data streaming capability. 

• 44% of respondents reported having built-in QA/QC process and 33% reported that they would like 
to have this capability. 



 

 

• The 2020 NCHRP Synthesis study indicated that states are working on new ways to use existing 
WIM data, or finding less costly ways to collect vehicle classification data. Our results support this 
statement in a more concrete way: 

o 12 states (AL, AZ, GA, IL, IN, MI, MO, ND, OH, OR, WA, WI) report satisfactory levels of 
WIM integration with weight stations for pre-screening. 

o 5 states (AL, AZ, IL, IN, WA, WI) report satisfactory levels of WIM integration with license 
plate readers. 

o 5 states (AL, AZ, GA, IL, ND, WI) report satisfactory levels of WIM integration with video 
recognition (e.g., speed and class)  

o 4 states (AZ, IL, ND, WI) report satisfactory levels of WIM integration with audio sensors 
(e.g., weight and speed assessment). 

o Only Wisconsin and Michigan DOTs report satisfactory levels of WIM integration with audio 
and video data. 

o 5 state DOTs (GA, ID, IN, SC, WI) report satisfactory levels of WIM calibration technology 
supported by Machine Learning algorithms. 

o 4 state DOTs (GA, IN, SC, WI) report satisfactory levels of WIM integration with interactive 
quality assurance dashboard and interactive analytics. 

o Only Wisconsin DOT report moderate level of satisfaction with LIDAR and four other DOTs 
reported dissatisfaction with LIDAR technology. 

WIM Sensors 

• Most states have piezo-electric (19), lineas quartz (14) or piezo-polymer (9) sensors in conjunction 
with inductive loop detectors. Only six states use quartz crystal-based sensors with a digital 
interface, which is the newest sensor technology. Eight states report planned future use of this 
technology. Piezo-ceramic sensors and infrared and magnetic detectors are reported to be in use 
by very few agencies. 
 

• 11 state agencies report moderate or high sensitivity of sensors to temperatures potentially 
affecting WIM data quality especially in northern and southern states. 
 

• The survey suggests that pavement type does not affect sensor selection. Piezo sensors are used 
more often with asphalt pavement. Bending plate sensors are used more often with PCC pavement. 
 

• 70% of the state DOTs report full lane sensor configurations (e.g. PLP) whereas 30% report half 
lane configurations. 43% indicate sensor-loop-sensor array configuration, 38% reported loop-
sensor-loop (LPL) and 19% reported loop-sensor-sensor-loop (LPPL or LQQL) configurations. In 
terms of the number of sensors per lane, 82% indicate double threshold sensors, 4% report single 
thresholds and 14% indicate “it depends”. Only AZ and MN DOTs report the installation of WIM 
arrays in all lanes at multilane sites. 
 

• Lineas quartz sensors have been reported to have the long lifespan (>7 years) compared to piezo-
electric and piezo-polymer with a life span of 4 to 7 years. Piezo-ceramic sensors seem to have a 
shorter life span (<4 years). 
 

• 70% of the states say that rural freeways and rural major arterial corridors are important places for 
WIM installations. 62% say urban freeways and urban major arterials are most important while 35% 
say urban collectors and 30% say agricultural service highways.  

WIM System Costs 

• 13 states report funding WIMs (presumably for installation) using 20% state and 80% federal funds. 
5 report the reverse: 80-100% state and 0-20% federal. 8 states reported using existing budgets 
for expansion of their WIM system, 20 states indicate using a combination of federal and other 
funding sources for expansion. 
 

• KS, VA, MI and GA indicate the use of enforcement funds as part of funding source for their WIM 
systems. However, FL, IO, ND and WI indicated use of enforcement funds for potential expansion 
of the WIM system. 



 

 

 

• A majority of the states (48%) believe that the cost of WIM sensors has remained the same since 
2018. However, a significant minority of respondents (22%) believe that the cost of WIM sensors 
has increased. This suggests that there may be some variation in the cost of WIM sensors, 
depending on factors such as the manufacturer and the new sensor technologies. It is also worth 
noting that a small number of respondents (6%) report that the cost of WIM sensors has decreased. 
This suggests that there may be some competition in the WIM sensor market, which could be 
reducing prices. Finally, 23% of respondents reported that they had no opinion on the cost of WIM 
sensors. This suggests that they may not be familiar with the current market prices for WIM sensors, 
or that they do not believe that the cost of WIM sensors is a significant factor in their decision-
making process. 
 

• Based on the responses below, compared to 2018 FHWA report, sensor costs seem to be declined 
and sensor lifetimes have remained the same replacement costs seem to be stable. 
. 

 
    

WIM COMPONENT LIFE (YRS) LOW ($) HIGH($) 
Inductive Loop Detectors 10.8 994 2,006 
Piezo-Electric 4.7 2,340 3,960 
Piezo-Polymer 3.8 2,333 4,000 
Piezo-Ceramic 3.25 2,667 4,333 
Lineas Quartz 5.6 9,243 12,157 
Bending Plate    6 12,000 15,000 
Load Cell     11 25,250 45,000 

Digital Quartz                      8                                        

Strain Gauge Strip Sensor  4.5 2,650 7,250 
Roadside Eq/Data Logger 11 13,360 26,000 

Communication tools             7      650 1,290 

 
 

WIM COMPONENT  AVG. INSTALLATION COST(S) 

Controller 13,725 

Infrastructure 26,500 

Initial Calibration 4,114 

Vendor Software 3,700 
  

Based on the survey results, WIM Routine maintenance costs seem to be higher compared to 2018. 
Routine calibration and sensor replacement costs seem to be stable. 

 
 
Operating Element 

Lower Cost 
($) 

Upper Cost 
($) 

Routine maintenance 1,700 4,263 

Routine calibration 2,307 5,611 

Sensor replacement   

» Inductive loop detectors 542 4763 

» Piezo-electric 1,950 11,533 

» Piezo-polymer 750 14,750 

» Piezo-ceramic 1,500 2,667 

» Lineas quartz sensor 1,950 7,333 

» Digital Quartz    

» Strain gauge Strip sensor 1,500 2,000 

» Bending plate 1,000 1,750 

» Single load cell 1,333 3833.33 

» Active infrared detection 500 12,000 

Roadside eq./data logger 693 7,433 
Alternative(e.q.optical fiber) 500 1,200 

Communication tools 248 668 

 
12 states indicate that the two main components of their WIM budget are sensor replacement (36.5%) 
and maintenance (32.25%). Calibration accounts for 15% and the remaining 15.5% is divided 



 

 

between additional stations (10.83%) and other expenses such as IT (5.42%). 

 

Futuristic Outlook 
 
Most states (63%) expressed strong interest in establishing common standards for evaluating WIM 
system reliability. This suggests that there is a strong need and desire for standardized methods and 
criteria to assess the performance and reliability of WIM systems. The use of common standards 
would ensure consistency and comparability of WIM data across different jurisdictions or 
organizations, facilitating informed decision-making and resource allocation. 
 
The state respondents chose responses of "Somewhat likely" and "Extremely likely" with regard to 
WIM systems. The response breakdowns are shown below. It seems state agencies are expecting 
further integration of WIM systems with enforcement. It is interesting to note that the respondents do 
not anticipate WIM systems to reduce the pavement investment. 

 
 

 
Outcome 

Somewhat 
Likely 

Extremely 
Likely 

Extremely 
Unlikely 

Total 
Likely 

Enforcement will increase 26.1% 30.4% 4.3% 56.5% 
Less pavement investment 13.0% 8.7% 39.1% 21.7% 

Tolls based on weight 21.7% 17.4% 34.8% 39.1% 
Tickets for overweight trucks 26.1% 26.1% 4.3% 52.2% 

 

• States indicate that the most significant factors in selecting a Weigh-In-Motion (WIM) technology 
are reliability, data accuracy and quality assurance, and system calibration effort. Maintenance 
effort, return on investment, and maintenance cost are indicated to be the next significant factors. 

• Ohio, Arkansas, Illinois, Georgia, Rhode Island and South Carolina DOTs indicate interest in 
receiving WIM or freight data from North Carolina, whereas 16 states (KS, PA, AZ, WI, ND, MI, 
MN, WA, IA, MT, AK, ID, VT, OK, OR, and MS) indicated no interest because NC is not a 
bordering state. 
 

• Ohio, Oklahoma, South Carolina, and Georgia DOTs (definitely), Arkansas, Illinois, Kansas and 
Minnesota DOTs (probably) are interested in all aspects of partnerships/collaborations with NC 
DOT. 

 

3.2.Primary Stakeholder Survey Findings 
 
The Primary Stakeholder survey divided into six blocks focused on organization and expertise (4 questions), 
WIM Data Usage (6 questions), WIM System Characteristics (2 question), WIM Data Cost (2 questions), 
WIM Technology (5 questions) and NCDOT Partnership (3 questions). The survey was sent to 100 
individuals (by email). The response rate was 10%. 
 
The following analysis is based on the Primary Stakeholder survey responses: 
 

• The most common affiliation among the respondents was Freight/Logistics Operator/Provider (30%).  
The second most common affiliations were MPOs or COGs, Department of Defense or similar, and 
Other (Higher Education Institute and Public Policy Think Tank) (20% each). The least common 
affiliations were County, city or municipality, EPA or State equivalent, FHWA, Design engineer-
pavement/bridge, Toll authority or operating agency, and Transportation planner (0% each). The only 
affiliation with a single respondent was rail and water transport operator. 
 

• Most respondents reside in North Carolina, accounting for 70% of the total. This is followed by 
Tennessee and the District of Columbia, with 20% and 10% respectively. 

• A significant portion of the respondents (60%) were not familiar with WIM Systems. 30% were and 10% 
were very familiar. This suggests that there is an opportunity to increase awareness of WIM Systems. 



 

 

• The most common areas of expertise were asset management and freight logistics (15% each). The 
next most common areas were highway operations, inter-agency relations, planning and programming, 
research and development, and transportation planning (10% each). The least common areas of 
expertise were airports, freight planning, ports and terminals, and data analysis (5% each). The areas 
of expertise not selected by any respondents were bridge design, construction, highway maintenance, 
multi-modal transportation, pavement design, WIM provision, and law enforcement (0% each). 
 

• 11% of the respondents indicated that their organization received WIM data quarterly. 89% indicated 
not receiving WIM data at all. One respondent reviews and uses WIM data quarterly, another reports 
using it annually, and eight (75%) indicate no use of WIM data for decision-making.  

• The application areas that are most frequently rated as extremely useful for WIM data are freight 
planning and design (28.57% each). The application area that is most frequently rated as very 
useful for WIM data is multi-modal planning (42.86%). Those that are most frequently rated as not at 
all useful for WIM data are construction, design, enforcement (57.14% each), and crash analysis 
(42.86%). The area with the most diverse ratings for WIM data is operations, with respondents rating it 
from not at all useful to extremely useful. 

• The locations that are most frequently rated as very important for placing a WIM station are urban 
freeway corridors, rural freeway corridors, port access highways, rail terminal access highways, 
and distribution center access highways. The locations that are most frequently rated as unimportant 
for WIM stations are urban collectors, rural freeway corridors, rural major arterial corridors, rural minor 
arterials, rural two-lane roads, agricultural service highways, logging service highways, and quarry 
service highways. 

• Data accuracy and quality assurance are identified as the most significant factors for WIM data, with 
50% of respondents rating these aspects as very significant, followed by installation cost and 
maintenance/calibration effort. Return on investment is the least significant factor, with only 16.67% of 
respondents rating it as very significant. Technology upgrades and reliability are evenly distributed, 
with respondents rating them from very insignificant to very significant. 

• One respondent indicated that funding was divided into 13% state funds, 5% enforcement, and 8% 
private funding sources. 

• Other data being used in conjunction WIMs included occupancy counts for express lanes, speed 
estimates, and pressure gauge readings. None of the respondents indicated a use of license plate 
readers, vehicle classifiers, toll collectors, and direct enforcement. 
 

• Respondents indicated a high interest in using WIM data in conjunction with weigh stations (pre-
screening), license plate readers, video recognition, and interactive analytics.  
 

• Interactive QA dashboards and LIDAR were the sensor technologies respondents would be interested 
in using. These technologies are relatively new, and they have the potential to significantly improve the 
efficiency and accuracy of WIM systems. The sensor technologies with the lowest ratings were audio 
sensors, audio and video with WIM, and real time data from low power edge computing and wireless 
communications.  
 

• 80% of the respondents indicated an interest in standards for assessing WIM system reliability. 
 

• System calibration and data accuracy were reported to be the most critical factors for using WIM data. 
Real-time, low latency data and data management and permissions were also reported to be important. 
WIM data sharing was indicated to be valuable for using WIM data. Transportation agencies should 
consider all these factors when planning and implementing WIM systems. 
 

• Respondents anticipated that WIM systems will result in increased tickets for overweight trucks. There 
was a consensus that WIM systems will increase enforcement, decrease pavement investments and 
enable weight-based tolling. 



 

 

• The most common ways identified to access or obtain WIM data or statistics were “obtain reports by 
request” and “summary data is accessible through the dashboard, but more detailed data must be 
requested” (33.33% and 22.22%, respectively). 

• The respondents reported following WIM-based statistics used for the selected application areas: 
o Freight Planning: Fleet capacity planning and allocation, DOT SAFERWEB 
o Multi-Model Planning: DOT SAFERWEB 
o Crash Analysis on Arterials: Number of instances caused by overweight, DOT SAFERWEB 
o Crash Analysis on Freeways: Number of instances caused by overweight, DOT SAFERWEB 
o Environmental: Emission as a function of actual weight and vehicle class 
o Enforcement: Number of over-weight penalties 

 

• Five participants were interested in partnering and receiving WIM or freight data from North Carolina. 
 

3.3.Analysis of the Enforcement Survey 
 
The Enforcement survey contained six blocks including organizational information (3 questions), WIM 
Technology Usage (5 questions), WIM Data (3 questions), WIM System Costs (1 question), Technology 
Integration (4 questions) and NCDOT Partnership (3 questions). The survey was sent to 15 enforcement 
contacts and shared with academics with an interest in enforcement. Five respondents to the DOT survey, 
from MI, WI, VT, MA, and SD, identified themselves as law enforcement experts. However, we have not 
included their responses here since the focus of this survey was on enforcement agencies outside of DOTs. 
 
Although 11 responses were obtained, none contained answers beyond the third question. Hence, we 
scheduled a meeting with the enforcement representatives, namely Traffic Safety Systems Engineer and 
North Carolina Transportation Mobility and Safety Division staff, research team as well as NCDOT Steering 
Committee. 
 
The meeting resulted in new information regarding the current inventory of the WIM sites in NC. The Table 
5 and map below show where these are located and their outfitting. The sensors are installed only in the 
shoulder lane and all but 2 of them are located immediately upstream of a permanent weigh station. The 
meeting proved useful in encouraging future collaboration and data sharing conversations to maximize the 
output of the current and future WIM systems.  

 

 
Figure 4 Map of Weigh Stations in North Carolina 



 

 

Table 5 Current WIM Stations Maintained by Enforcement  

 
County City (vicinity) Route Dir. Location 

Drive 
Wyze' 

Pre 
Pass 

1 

DOT 
Reader' 

Thermal 
Imaging' 

License 
Plate 

Reader' 

Tire 
Screening 
Device 1 

WIM Ramp 
Screening 1 

WIM 
Mainline 

Screening 
Fiber1 

Dynamic 
Message 

Sign 

Over 
Height 

Detector• 

Sort 
Signals• 

Buncombe Asheville I-40 EB Approx. 12 miles w 
of Asheville 

A A 
 

A A A 
 

A A X 
  

Buncombe Asheville I-40 WB A 
 

F 
 

F F 
 

F A X X 
 

Gaston Gastonia I·85 NB Approx. 2 miles SW 
of Gastonia 

A A   A A A A A X X X 

Halifax Enfield I-95 NB Approx. 18 miles S 
of Roanoke Rapids 

A A A 
 

A A 
  

A X 
 

X 

Halifax Enfield I·95 SB A A 
  

F 
 

A 
 

A 
   

Henderson Hendersonville I-26 EB Approx. 7 miles N of 
Hendersonville 

A x'   F        

Henderson Hendersonville I·26 WB A A 
  

F 
     

X X 

Iredell Statesville I-40 EB Approx. 6 miles w of 
Statesville 

A A 
  

F F 
 

A 
 

X 
  

Iredell Statesville I-40 WB A A A  A F  A A X   

Mecklenburg Charlotte I·85 SB Approx. 10 miles 
SW of Charlotte 

A    A A  A A X X X 

Montgomery Seagrove I-74 NB Approx. 3 miles S of 
Seagrove        

A 
    

 

New Hanover Wilmington US 421 NB Approx. 3 miles E 
and N of Belville 

    A   A      
 

Orange Hillsborough I-40/85 EB/NB Approx. 15 miles W 
of Durham 

A A 
  

A A A A A X X X  

Orange Hillsborough I-40/85 WB/S
B 

A A 

  

A F A A A X 

  
 

Robeson Lumberton I-95 NB Approx. 10 miles N 
of Lumberton 

A A 
  

F 
    

X 
  

 

Robeson Lumberton I·95 SB A    F County    X  X  

Surrv Mount Airy I-77 NB Approx. 3 miles S of 
the Virginia state line 

A A 
  

A A 
 

A 
 

X 
 

X  

Surry Mount Airy I·77 SB A A   A  A   X  X  

Total 
Stations: 

18 Total Items: 16 13 3 1 18 10 5 11 9 13 5 8  

A = Active       F= Funded         X= Present 
'  Source: Weigh Station Feasibility Study" prepared by HNTB for  the NCDOT Transportation Mobility and Safety Division (September 2022)  unless otherwise specified. 
'  Source: Weigh Station Static Scale Assessment prepared by HNTB for  the NCDOT Transportation Mobility and Safety Division (June 2023).  



 

 

3.4.Vendor Survey 
 
The Vendor survey was sent to 25 different vendors operating in the United States. The response rate was 
4%. The survey contained seven blocks including Vendor information (5 questions), WIM Data/Usage (8 
questions), WIM Sensor Technology (5 questions), WIM System Characteristics (6 questions), WIM System 
Costs (8 questions), Technology Integration (3 questions) and Partnership with NCDOT (2 questions). 
 
Because of the low response rate and lack of cost and technology information, our analysis limited.  

• The major vendors, especially manufacturers, are providing worldwide services. 
 

• They are not necessarily providing portable WIM solutions, but they are providing various other 
services calibration, such as virtual weigh stations, tire safety screening, automated wright 
enforcement, weight-based tolling and prescreening. 

 

• Their WIM systems are installed for various purposes including bridge and pavement design, 
highway operations and maintenance, R&D, data analysis, transportation planning and law 
enforcement.  
 

• Their systems can push WIM constantly (lineas quartz and digital quartz) and suggest an annual 
review for data accuracy. 
 

• WIM data seems to be used for crash analysis, bridge and pavement design and maintenance, 
enforcement, and safety assessments. WIM data is reported to be relatively less useful for freight 
and multi-modal planning, construction, and environmental assessments. 
 

• The life cycle of the WIM sensors is 1 year at a minimum and 15 years at a maximum with an 
average of 7 years. The lineas quartz sensor technology is reported to have the longest life span, 
while piezo-electric, piezo-polymer and piezo-ceramic sensors are reported to have the shortest 
life spans. Bending plates strain gauges, digital quartz, magnetic and other sensor types are 
reported to have moderate (4-7) life times.  
 

• The average procurement lead time is reported to be 2-3 weeks. 
 

• Temperature sensitivity is reported to be unimportant, and the preferred pavement type is asphalt. 
 

• Only manual calibration is possible, with automated data polling. Auto-calibration, automated data 
streaming, built-in QA/QC, real-time reporting capabilities are not available. 

• WIM technicians, state QA personnel, district or resident engineers, and enforcement personnel 
are reported as being the people responsible for checking the quality of WIM data.  
 

• Although rural freeways and arterials as well as urban freeway and arterials are the best locations 
for WIM stations; clients seem to mostly chose rural freeway or rural major arterial corridors.  

• Initial installation cost, maintenance and calibration effort, reliability, data accuracy and QA, 
technology upgrade and ROI are very significant factors regarding WIM system installation. 
 

• The most common WIM sensor configuration is single threshold - staggered, with one sensor in 
each wheel path. Contrary to the state DOT survey results, one vendor indicates that the single 
threshold configuration is the one most often specified. 
 

• Installation of WIM arrays in all lanes at multilane sites is most often preferred. 

• One respondent avoided the cost-related questions, possibly viewing those details as proprietary. 

• One respondent may have bypassed the technology-related questions, likely due to confidentiality 
concerns. 

We feature a few specific vendors below. 

Kistler  
The advanced and certified Weigh In Motion (WIM) systems from Kistler collect and process traffic data 
without impact to traffic flow. KiTraffic and its Lineas quartz sensors reach an accuracy of up to 2.5 % GVW 
and feature an extremely high lifetime. The measurement technology experts’ portfolio includes 
comprehensive measurement systems that range from sensors to software. Reliable data on traffic volume, 
axle load and total weight facilitate the identification of overloaded vehicles, thus helping to reliably protect 



 

 

road infrastructure, increase road safety and effectively charge traffic originators. Additional services, such 
as Site Selection and calibration, round off the Weigh In Motion (WIM) system portfolio from Kistler. 

 
Mettler Toledo  
The staggered WIM sensor configuration eliminates the need for costly, maintenance-intensive axle 
sensors or the use of additional WIM sensors. Their exclusive Auto-Calibration of the WIM sensors via a 
static scale interface eliminates costly regular calibration. Full system integration capabilities provide 
maximum flexibility in real-world applications, from communication with state-wide or National data 
networks, to combining weighing operations with other vehicle safety and credential-checking technologies. 
Designed to comply with ASTM E1318 requirements. Range of peripheral devices includes: 

• Over-height and off-scale detection 

• Variable Messaging Signs to sort vehicles and control traffic flow 

• Image capturing with LPR (License Plate Reader) and USDOT number readers using OCR 
(Optical Character Recognition) technology 

• In-motion vehicle dimensioning 

Vehicle Weigh-in-Motion software is provided in three configurations to match the WIM application: 

• WIMenforce™ provides a weigh station user interface that is easy to interpret and assures efficient 
operation. It includes a reporting feature to generate a variety of truck volume reports with graphical 
elements and the option to export the reports to different formats. 

• WIMplan™ makes vehicle data collection simple. Data includes counts, length, weight, 
classification, and speed. When multiple sites are linked, WIMplan can collect planning information 
and send it to a central computer for analysis. The software is also able to display real-time traffic 
information from one lane or any combination of lanes, and to produce a graphical representation 
of the vehicles by lane. 

• Web-based WIMvirtual™ can monitor commercial vehicle traffic at strategic remote Weigh-In-
Motion sites. Sites typically combine weigh-in-motion sensors with imaging technology – overview 
and license plate cameras – to generate vehicle weight information and vehicle identification. The 
WIMVirtual record gives enforcement officers the information they need to monitor commercial 
vehicle compliance. 

• Web-based WIMvirtual™ can monitor commercial vehicle traffic at strategic remote Weigh-In-
Motion sites. Sites typically combine weigh-in-motion sensors with imaging technology – overview 
and license plate cameras – to generate vehicle weight information and vehicle identification. The 
WIMVirtual record gives enforcement officers the information they need to monitor commercial 
vehicle compliance. 

 
 

Cardinal – Vendor 
 

Cardinal Scale offers a full line of in-motion 
vehicle scales utilizing strain gauge load cell, 
piezoelectric, and Kistler LINEAS® 
technologies. These scales meet or exceed 
ASTM E1318-02 performance requirements 
and can be used with a variety of peripherals 
like over-height detectors, off-scale sensors, 
image capture cameras, DOT and ALPR 
readers and others. Custom software allows 
the WIM-based system to fit your exact 
requirements while modular hardware design 
ensures the ability to upgrade in the future.  
 

The Cardinal SWIM Series of Slow Speed In-Motion 
Vehicle Scale offers the ideal combination of 
accuracy and speed. The SWIM In-Motion Scale Figure 5 Slow-Speed In-Motion Load Cell-

Based Scales 



 

 

uses a single weighbridge contained in a solid lower frame. Each platform is supported by four Cardinal 
SCA Series Stainless Steel Compression Load Cells to weigh each axle end of a vehicle as it travels across 
the scale. The weighing platform is approximately 12 feet in width and 30 inches in length and is constructed 
of smooth steel plate. The welded steel structure is designed with performance and longevity in mind. The 
extremely stiff and rigid weighbridge, coupled with four 50,000-pound capacity Cardinal strain gauge load 
cells, results in a higher resonant frequency allowing more efficient filtering of spurious weight signals.  
 
 

Cardinal’s QWIM Series uses Kistler Lineas Quartz Sensors, and Cardinal’s CVW Series WIM controller. 
QWIM series scales have a fifteen-year history in traffic monitoring, ramp sorting, and virtual weigh station 
application.  
 
 

 
Figure 6a Cardinal Virtual Weigh Station Configuration and Statistical Report 

 



 

 

 
Figure 7b Cardinal Virtual Weigh Station Installation Configuration 

 

 
Figure 8 Cardinal Virtual Weigh Station Operator’s Display 

 
    



 

 

4. DESIGN SUGGESTIONS FOR A WEIGHT MONITORING PROGRAM   
 
Vehicle weight monitoring is a critical component of transportation safety and infrastructure management. 
Overweight vehicles can damage roads and bridges, reduce their lifespan, and create safety hazards for 
other road users. By monitoring vehicle weights, transportation agencies can identify and address 
overweight vehicles, protect infrastructure, and improve safety. 
 
Weigh-in-motion (WIM) technology is a non-invasive way to measure the weight of vehicles while they are 
in motion. WIM systems can be installed on roads and bridges and they can collect data on vehicle weights, 
axle loads, and other vehicle characteristics. WIM technology offers several advantages over static weigh 
stations, portable scales, and other traditional methods of vehicle weight monitoring. WIM systems can 
collect data on many vehicles without disrupting traffic flow. They can also monitor vehicle weights in remote 
or inaccessible locations. 
 
WIM technology is increasingly being used by transportation agencies worldwide to implement vehicle 
weight monitoring (VWM) programs. VWM programs can achieve a variety of objectives, such as: 

• Ensuring the safety and durability of roads and bridges 

• Identifying and addressing overweight vehicles 

• Collecting data on vehicle weights, axle loads, and other vehicle characteristics 

• Informing transportation planning and decision-making 
 

4.1.Designing a Comprehensive VWM Program 

When designing a comprehensive VWM program, transportation agencies should consider several 
factors. These include: 

• Program goals and objectives: What are the specific goals and objectives of the program? For 
example, does the agency want to focus on identifying and addressing overweight vehicles, or 
does it want to collect data on vehicle weights for transportation planning purposes? 

• Target populations: What types of vehicles will be targeted by the program? For example, will the 
program focus on all vehicles on a particular road or bridge network, or will it focus on commercial 
vehicles? 

• Data collection methods: What data collection methods will be used? WIM technology is the most 
common method for collecting vehicle weight data, but other methods, such as portable scales 
and static weigh stations, may also be used. 

• Data analysis and dissemination: How will the data collected from the program be analyzed and 
disseminated? The data should be analyzed to track vehicle weights over time, identify 
overweight vehicles, and inform transportation planning and decision-making. The data should 
also be disseminated to the public and other stakeholders. 

• Integration with WIM technology: How will WIM technology be integrated into the program? WIM 
data can be used to identify overweight vehicles, develop targeted enforcement strategies, and 
inform transportation planning and decision-making. 

• Program implementation and evaluation: How will the program be implemented and evaluated? 
The program should be implemented in a phased approach, and it should be evaluated on a 
regular basis to assess its effectiveness in meeting its goals and objectives. 

 
Moreover, there are WIM-related design considerations that should be considered when designing and 
implementing a comprehensive VWM program. These include: 

• Technology: Several WIM technologies are available, each with its own advantages and 
disadvantages. Transportation agencies should carefully consider their specific needs when 
selecting a WIM system. 

• Calibration and maintenance procedures: It is important to properly calibrate and maintain WIM 
systems to ensure that they are providing accurate data. 

• Data analysis procedures: The data collected from the WIM system should be analyzed using 
sound statistical methods. This will help to ensure that the data is accurately interpreted and used 
to make informed decisions. 



 

 

• Dissemination processes: It is important to communicate the findings of the VWM program to the 
public and other stakeholders. This can be done through reports, websites, and other 
communication channels. 

 
A VWM program is an essential component of transportation safety and infrastructure management. By 
integrating WIM technology into a comprehensive VWM program, transportation agencies can identify and 
address overweight vehicles, protect infrastructure, and improve safety. Transportation agencies should 
carefully consider the design issues discussed above when implementing a comprehensive VWM program. 
VWM technology is rapidly evolving; new technologies are constantly emerging. For example, some 
transportation agencies are exploring the use of artificial intelligence (AI) to analyze WIM data and identify 
overweight vehicles. Other agencies are developing new ways to integrate WIM data with other 
transportation data sources, such as traffic data and weather data. As VWM technology continues to evolve, 
transportation agencies will have new opportunities to design and implement VWM programs that are more 
effective and efficient. NCDOT can use AI to: 

• Improve the accuracy of WIM systems: AI can be used to develop new algorithms for WIM 
systems that can more accurately measure vehicle weights, especially in challenging conditions 
such as high traffic volumes or bad weather. It can also help better detection of irregularities and 
discarding of invalid measurements. 

• Automate the identification of overweight vehicles: AI can be used to develop systems that can 
automatically identify overweight vehicles from WIM data. AI can help in accurately classifying 
vehicles, even in uncommon situations involving vehicles towing other vehicles. This can help to 
improve the efficiency and effectiveness of weight enforcement programs. 

• Support predictive maintenance: AI can be used to analyze WIM data to identify potential 
problems with WIM systems before they occur. AI can compensate for sites where missing or 
broken in-ground sensors lead to compromised data collection. This can help to reduce downtime 
and ensure that WIM systems are always operating at peak performance. 

• Integration with Other Systems: AI can be used for re-identification of commercial vehicles 
allowing WIM systems to operate with fewer intrusive sensors. 

• Support research on vehicle weight and its impact on transportation infrastructure and safety: AI 
can be used to analyze WIM data to identify trends and patterns in vehicle weight and traffic flow. 
This information can be used to support research on vehicle weight and its impact on 
transportation infrastructure and safety. 

• Develop new algorithms for calibrating and maintaining WIM systems: Enabling continuous 
calibration can help to ensure that WIM systems are providing reliable real-time data over time. 

• Develop new WIM data analysis tools customized for different stakeholders: This information can 
be used to identify trends and patterns in vehicle weight data to improve transportation planning 
and decision-making. 

 
Some specific examples of how AI is being integrated with WIM technology today include: 

• FHWA (the Federal Highway Administration) is developing an AI-based system for identifying 
overweight vehicles from WIM data. The system is expected to be able to identify overweight 
vehicles with greater accuracy and efficiency than current methods. 

• The European Union-funded Horizon 2020 project Weigh-in-Motion for Smart Transport 
(WIM4ST) is developing a new generation of WIM systems that are integrated with AI. The 
WIM4ST systems are expected to be more accurate and reliable than current WIM systems, and 
they will be able to collect a wider range of data on vehicle weights, axle loads, and other vehicle 
characteristics. 

• Weighbridge Systems, an Australian company, is developing an AI-based system for predictive 
maintenance of WIM systems. The system is expected to be able to identify potential problems 
with WIM systems before they occur, which can help to reduce downtime and ensure that WIM 
systems are always operating at peak performance. 

 
Overall, AI has the potential to significantly improve the performance and capabilities of WIM technology. 
AI-powered WIM systems will be more accurate, reliable, and efficient than current WIM systems, and they 
will be able to collect a wider range of data on vehicle weights, axle loads, and other vehicle characteristics. 
This data can be used to improve the safety and durability of roads and bridges, to identify and address 
overweight vehicles, and to support research on vehicle weight and its impact on transportation 
infrastructure and safety. 



 

 

For the success of any new initiative, selecting the right product through the right vendor is particularly 
important. To that end, we explored various technologies that are currently available in this industry and 
the vendors that provide these systems.  

   

4.2.WIM Vendor Selection Model  
 
NCHRP (2023) provides a detailed guideline for WIM sensor selection (Tools for Assuring WIM Data 
Quality: Practical Guide). However, this guide does not cover the vendor selection process. 
Based on the procurement recommendations presented in WIM Guidebook, Part 1 (dot.gov) and the survey 
results presented above, and using the analytical hierarchy process and multi-objective decision making 
models, the research team developed a methodology that should help agencies optimize their vendor 
selection process. 

Assign Weights to the Selection Criteria: A Multi-Expert Approach: Effectively selecting the most suitable 
vendor requires a thorough evaluation process that considers various factors and prioritizes their relative 
importance. Assigning weights to selection criteria is a critical step in this process, as it allows decision-
makers to quantify the significance of each factor in determining the optimal vendor. However, relying solely 
on the judgment of a single individual can introduce biases and potentially lead to inaccurate results. To 
mitigate this risk and enhance the robustness of the decision-making process, employing a multi-expert 
approach using pairwise comparison matrices and the Analytic Hierarchy Process (AHP) is recommended. 

 
Create a Pairwise Comparison Matrix: A pairwise comparison matrix is a structured tool used to quantify 
the relative importance of different criteria. In this matrix, each criterion is compared against every other 
criterion, and a numerical value is assigned to indicate the degree of preference. For instance, if you are 
comparing the criteria of "price" and "quality," a value of 2 for "price" in the corresponding cell would indicate 
that you consider price to be twice as important as quality. This numerical representation allows for a more 
objective and consistent assessment of relative importance. 
 

 

Figure 9 Sample Pairwise Comparison Matrix 

Use the Analytic Hierarchy Process (AHP): The Analytic Hierarchy Process (AHP) is a multi-criteria 
decision-making framework that helps prioritize different criteria and evaluate alternative options. By 
decomposing complex decisions into smaller, more manageable hierarchies, AHP allows for a systematic 
and transparent approach to decision-making. In the context of vendor selection, AHP can be used to 
structure the evaluation process, decompose the overall selection decision into smaller sub-decisions, and 
prioritize the various selection criteria. 

To effectively gather weights from multiple experts and ensure a comprehensive assessment of relative 
importance, follow these steps: 

https://www.fhwa.dot.gov/policyinformation/knowledgecenter/wim_guide/wim_guidebook_part1_070918_(508_compliant).pdf


 

 

1. Identify Experts: Carefully select individuals who possess relevant expertise and experience in 
the procurement process and the specific domain of the vendor selection. 

2. Construct Pairwise Comparison Matrices: Provide each expert with a pairwise comparison matrix 
and ask them to compare the relative importance of each pair of selection criteria. Ensure that the 
experts have a clear understanding of the criteria and the context of the vendor selection process. 

3. Calculate Individual Weights: For each expert's pairwise comparison matrix, calculate the 
normalized weights using the eigenvector method. The eigenvector method is a mathematical 
technique that identifies the relative weights of the criteria based on the pairwise comparisons 
provided by the expert. 

4. Aggregate Individual Weights: Average the normalized weights from all experts to obtain a 
collective set of weights. Averaging the individual weights allows for the incorporation of diverse 
perspectives and helps mitigate potential biases. 

Use Average Weights for Vendor Selection: Once the average weights have been identified for each 
selection criterion, the vendor evaluation process can proceed as follows: 

1. Establish the Rating Scale: Define a common rating scale for each criterion, such as a numerical 
scale from 1 to 10, where 1 represents the lowest rating and 10 represents the highest rating. 
Ensure that the rating scale is appropriate for the nature of each criterion and provides a clear 
differentiation between different levels of performance. 

2. Evaluate the Vendors: Assess each vendor against each selection criterion using the established 
rating scale. Perform a thorough evaluation of each vendor's qualifications, experience, and 
proposed solutions, ensuring that the ratings are objective and consistent. 

3. Calculate the Weighted Scores: For each vendor, multiply each rating by the corresponding 
criterion weight and sum the products to obtain the vendor's weighted score. The weighted score 
reflects the overall performance of each vendor, considering both the ratings and the relative 
importance of the criteria. 

4. Compare the Vendors: Rank the vendors based on their weighted scores, with the highest score 
indicating the most preferred vendor. The vendor with the highest weighted score has been 
identified as the most suitable choice based on the specified selection criteria and the collective 
expertise of multiple experts. 

By incorporating the collective expertise of multiple experts through pairwise comparison matrices and AHP 
(as shown in Table 6 below), you can ensure a more objective, reliable, and well-informed approach to 
assigning weights and selecting the most suitable vendor. This approach helps mitigate biases, enhances 
transparency, and leads to a more robust and defensible decision-making process. 

 
Table 6 WIM Vendor Selection Criteria 

Criteria Weight Vendor A Vendor B Vendor C 

Compliance with regulations 11.7% 10 10 10 

Built-in QA/QC process 8.9% 9 8 8 

Ability to withstand extreme conditions 8.5% 8 8 8 

System warranty 8.2% 9 9 9 

Data Accuracy and reliability 6.9% 6 6 6 

Price-to-performance ratio 6.7% 6 6 6 

Check weight, dimensions at highway speeds. 5.8% 10 10 10 

System availability 5.7% 5 5 5 

Response time/lead time 4.3% 6 7 7 

Life of instruments 4.1% 6 8 7 

Optimized uptime and equipment life 3.1% 8 8 8 

Tire safety screening 3.0% 8 8 7 

Turnkey systems (Outsourcing 100% service) 2.6% 10 8 7 

Automatic scale calibration 2.1% 7 7 6 

Automated weight enforcement 1.9% 8 8 8 

Seamless data acquisition and integration 1.8% 8 7 6 



 

 

User training for accurate, safe, and effective 
operation 

1.8% 6 6 7 

Cost-effective maintenance 1.7% 8 8 7 

Experience in the WIM field 1.5% 9 7 7 

Traffic data collection 1.5% 9 8 8 

User-friendly user interface (UI), integration using 
REST API, etc. 

1.5% 8 8 7 

Expert installation, configuration, and start-up 1.5% 9 8 8 

Technology used 1.0% 8 8 7 

Granularity or frequency of data collection 0.9% 9 9 7 

License plate readers 0.8% 8 8 8 

Weight-based tolling 0.8% 8 8 7 

Availability of integrated solutions and upgrade 
options 

0.6% 6 6 6 

Permit checker 0.5% 6 6 6 

Vendor location 0.5% 9 9 9 

Energy consumption 0.4% 5 5 5  
1.00 7.9 7.8 7.7 

 

As illustrated in the vendor selection evaluation table above, the best decision is to select Vendor A as the 
sole-source provider. Awarding the contract to this vendor will give NCDOT a highly accurate and relatively 
easy to maintain system while eliminating the problems and cost associated with compatibility issues that 
arise from the integration of multiple systems.  In the awarding contract NCDOT should clearly state the 
requirements for its WIM BI Dashboard (data collection and real time processing requirements) to include 
what is required for law enforcement.   

For law enforcement data collection, contract road maintenance should be included for 140-yard stretches 
(100 prior and 40 after each WIM station) . A pairwise comparison matrix can be used to generate average 
weights for each selection criteria. Use of technology and different visualization tools to effectively monitor 
traffic data and enforce weight and other dimension restrictions. A fully functioning WIM system in North 
Carolina will improve NC’s highway planning, pavement and bridge design, freight movement studies, motor 
vehicle enforcement, and legislative and regulatory studies associated with traffic flow, movement, and 
weight. 

5. EMERGING TECHNOLOGIES & CONCEPTUAL SYSTEM DESIGN 

The emergence of intelligent transportation systems (ITS) represents a paradigm shift in managing vehicle 
traffic and infrastructure health. Traditional weigh-in-motion (WIM) systems, pivotal in these efforts, have 
long been constrained by their reliance on contact-based, mechanical measurement techniques. These 
methods, while effective, suffer from inherent limitations such as high maintenance costs, limited lifespan, 
and susceptibility to environmental factors.  

Artificial Intelligence (AI) and Computer Vision (CV) are technologies that have revolutionized various fields 
with their ability to interpret and analyze complex data. The research team advocates for the integration of 
AI and CV into WIM systems, aiming to transcend the constraints of traditional methods. By harnessing the 
power of AI algorithms and the analytical capabilities of CV, we propose a non-intrusive, more accurate, 
and cost-effective approach to vehicle weight measurement. This novel system is poised to redefine traffic 
load monitoring and infrastructure maintenance, aligning with the evolving needs of modern ITS. 

This section proposes a cutting-edge Weight-in-Motion (WIM) system using advanced Artificial Intelligence 
(AI) and Computer Vision (CV). This system aims to deliver a non-contact, highly accurate vehicle weight 
measurement method, improving traditional WIM systems. Key goals include developing an AI algorithm 
for precise visual data analysis to determine vehicle weights, integrating CV technology for processing real-
time data from moving vehicles, creating a cost-effective and low-maintenance system adaptable to 
different traffic conditions, and ensuring the system supports efficient traffic load monitoring and 
infrastructure health assessment. This innovative approach aspires to transform traffic management and 
infrastructure maintenance with a reliable, efficient, and technologically sophisticated solution. 



 

 

5.1 Technology Overview 

The proposed Weight-in-Motion system integrates two cutting-edge technologies: Artificial Intelligence 
(AI) and Computer Vision (CV). 

• Artificial Intelligence (AI): AI algorithms, particularly machine learning and deep learning models, 
form the core of the system. These algorithms are trained on vast datasets to accurately predict 
vehicle weights from visual data. They are capable of adapting to different vehicle types and 
environmental conditions, ensuring consistent performance. 

• Computer Vision (CV): CV technology is employed to capture high-resolution images of vehicles 
in motion. This includes advanced camera systems and image processing techniques. The 
system analyzes visual indicators such as tire deformation to estimate vehicle weight. This non-
contact method offers a significant advantage over traditional methods, reducing wear and tear 
on equipment. 

Together, AI and CV enable a highly accurate, efficient, and non-intrusive approach to measuring vehicle 
weights, marking a significant leap forward in WIM technology. 

5.2 System Design 

The proposed AI and CV-based Weight-in-Motion system comprises several key components and 
functionalities: 

• Sensors and Cameras: High-resolution cameras and specialized sensors are strategically 
positioned to capture real-time data of vehicles in motion. These devices are designed to work in 
various lighting and weather conditions. 

• Data Processing Unit: This unit is equipped with powerful processors and adequate storage to 
handle large volumes of data. It runs the AI algorithms and processes the visual data captured by 
the cameras. 

• AI and Machine Learning Models: The heart of the system, these models are trained to analyze 
the captured data, focusing on parameters such as tire deformation, to accurately estimate 
vehicle weight. 

• User Interface and Reporting Software: A user-friendly interface allows operators to monitor the 
system, view real-time data, and generate reports. This includes weight estimations, traffic flow 
analysis, and system diagnostics. 

• Existing Infrastructure Integration: The system is designed for easy integration with current traffic 
management systems, ensuring seamless operation and data sharing. 

• Maintenance and Support System: A comprehensive maintenance plan ensures the longevity and 
reliability of the system, including regular software updates and hardware checks. 

This design ensures that the WIM system is not only accurate and efficient but also robust and user-
friendly, meeting the needs of modern traffic management and infrastructure maintenance. 

5.3 Benefits and Applications 

AI and CV technologies provide a more precise weight measurement compared to traditional systems. 
The system's reliance on visual data eliminates the need for physical contact, reducing wear and tear. 
Lower maintenance and operational costs due to the non-contact nature and advanced analytics. 
Capable of handling various vehicle types and environmental conditions. Offers immediate weight 
estimations, aiding in efficient traffic management. 

Applications: Optimizes traffic flow by providing accurate vehicle weight data. Assists in predicting and 
preventing infrastructure damage by monitoring vehicle weights. Useful for ensuring compliance with 
vehicle weight regulations. Provides valuable data for ongoing improvements in transportation technology 
and infrastructure planning. 

5.4 System Design & Implementation Plan 

The system should be designed as a three-tier architecture: 

• Presentation tier: The presentation tier will consist of a web-based user interface that will 
allow users to access the weight data and generate custom reports. 



 

 

• Application tier: The application tier will contain the business logic of the system, including the 
AI-based WIM system, the weight monitoring system, and the custom reporting module. 

• Data tier: The data tier will store the weight data in a relational database management system 
(RDBMS). 

System Components 

The system would be comprised of four components: 

1) Imaging System: one or more high-resolution cameras that are capable of capturing clear images 
of vehicles at high speeds. The cameras should be installed in strategic locations to ensure that 
all vehicles are captured. 

2) AI-based WIM System: a deep learning model that measures the weight of vehicles in real time. 
The deep learning model will be trained on a large dataset of images of vehicles with known 
weights. Once trained, the deep learning model will be able to accurately measure the weight of 
vehicles in new images. 

3) Weight Monitoring System: a relational data base management system (RDMS) that stores the 
weight data collected by the AI-based WIM system. The weight monitoring system will also 
provide users with access to the weight data through a web-based interface. The web-based 
interface will allow users to view the weight data in real time, as well as generate reports on the 
weight data. 

4) Custom Reporting Module: an application that allows users to generate custom reports on the 
weight data. The custom reporting module will allow users to filter the weight data by date, time, 
vehicle type, and other criteria. The custom reporting module will also allow users to export the 
weight data to a variety of formats, such as CSV, PDF, and Excel. 

The following are the system requirements for the imaging AI-based WIM and weight monitoring system: 

• Hardware: 
o One or more high-resolution cameras 
o A server with a powerful CPU and GPU 

• Software: 
o A web server 
o A programming language such as Python or Java 
o A deep learning framework such as TensorFlow or PyTorch 
o A database management system such as PostgreSQL or MySQL 
o A streaming platform such as Apache Kafka 

System Security The system should be designed with security in mind. The following security measures 
should be implemented: 

• Data encryption: The weight data will be encrypted at rest and in transit. 

• User authentication and authorization: Users will be authenticated and authorized before they are 
allowed to access the weight data. 

• Regular security audits: The system will be regularly audited for security vulnerabilities. 

System Maintenance The system will be maintained on a regular basis to ensure that it is operating 
properly and that the AI-based WIM system is still accurate. 

Reporting Capability for Different Stakeholders 

The custom reporting module will be designed to meet the reporting needs of different stakeholders. For 
example, the system could generate reports for the following stakeholders: 

• Transportation agencies: Transportation agencies could use the system to generate reports on 
the weight of vehicles on their roads and bridges. This information could be used to identify 
overweight vehicles and to monitor the impact of heavy vehicles on infrastructure. 

• Law enforcement agencies: Law enforcement agencies could use the system to generate reports 
on the weight of vehicles to identify overweight vehicles that may be violating traffic laws. 

• Freight companies: Freight companies could use the system to generate reports on the weight of 
their vehicles to ensure that they are not overweight and to track their fuel efficiency. 



 

 

 
Figure 10 Illustration for Low Latency Architecture 

Figure 9 presents an example low latency architecture. For illustration purposes, we assume that the traffic 
and vehicle data is collected by various WIM sensors. The data that has been collected is then published 
to our dedicated topics. Consumer clients can be developed wherever there is a need to utilize the data in 
real time. The data can be read by some consumer clients and displayed in a monitoring dashboard for real 
time usage. Any trained machine learning models can also be fed with the collected data to generate 
necessary alerts, notifications, or meaningful insights. The data can be fed to a persistent database by 
another consumer. MongoDB or some data warehouse can be used for that. The stored data can be used 
for reporting and visualization purposes. If there is a need to train any machine learning or AI model, the 
data from this persistent data source can be used. The user interface from a stakeholder’s point of view is 
represented by the different boxes. A cache layer (like Redis cache) can be installed to prevent any 
bottleneck situation if there is a need to connect this system with other external data sources.  

The major components of our architecture (besides Kafka and Database) are as follows. 

• Live Feed (Web User Interface)  for monitoring live traffic and vehicles in real time. 

• Machine learning and Artificial Intelligence for predicting the traffic pattern, overloaded vehicles, 
and accidents.  

• Data cube (MONGO DB or data warehouse) for archiving the traffic data.  

• Data analytics and Visualization (Visualization software) to deal with analysis, visualization, and 
reporting. 

We propose considering the following variables for a low latency architecture. 

• License Plate ID 

• Speed 

• Vehicle Length 

• Gross Vehicle Weight / Classification  

• Direction and lane 

• Axle Weight & Distance to determine the vehicle class. 

• Tire pressure detection  

• Lane Number 

• Whether liquid material is transported 

• Height of the vehicle 

• Timestamp 

 



 

 

6. PROPOSED VEHICLE WEIGHT MONITORING PROGRAM 

Based on the research literature and survey responses, the research team proposes that NCDOT develop 
a vehicle weight monitoring program with the following characteristics: 

6.1 Overall Program Design 

• Use a sample-based methodology for identifying the types of seasonal class volume and vehicle 
loading patterns experienced on NC routes. 

• Sampling should incorporate all types of facilities including those in urban areas, rural areas, 
designated truck routes, non-truck routes, arterials, collectors, and local routes. 

• Employ state of the art weigh in motion technologies to collect vehicle class and weight data. 

• Support dual use of the sample sites for traffic monitoring and real time enforcement purposes. 

• Use the existing Traffic Count Database System (TCDS) software to manage the processing and 
QC/QA of WIM data. 

• Identify WIM data-based stakeholder products to be supported by the program. 

• Customize the TCDS software and/or procure additional software to support generation of 
stakeholder data products.  

6.2 Weigh In Motion Standards 

• Use the ASTM E1318-09 specification “Standard Specification for Highway Weigh-In-Motion (WIM) 
Systems with User Requirements and Test Methods” as the standard for weigh in motion data.  

• Comply with the Type I and Type II systems as defined in ASTM E1318-09WIM systems for traffic 
monitoring. 

• Comply with the Type III system as defined in ASTM E1318-09WIM systems for both traffic 
monitoring and real time enforcement.  

• Use WIM system calibration procedures consistent with those specified in ASTM E1318-09. 

6.3 Weigh In Motion Technology 

The WIM technologies recommended can support meeting the standards specified above, are the lower 
cost technologies, and have a reasonable life cycle.  Recommendations are: 

• Sensor Technology – the piezo type sensor is recommended for WIM technology; recommended 
piezo technologies are: 

o Quartz piezo 
o Digital quartz piezo 
o Strain gauge piezo 

These types of piezo sensors are currently in use on the mainline WIM enforcement sites. Other 
types of piezo sensors are not suitable for weight measurements but can be used for axle based 
classification; the bending plate and load cell technologies are suitable for weight measurements 
but would add substantial cost for installation and maintenance 

• WIM Array configuration recommendation: 
o Use a double threshold piezo array for weight measurements (two full lane width sensors 

or 4 wheel path sensors); this configuration is in use for enforcement at the existing 
mainline WIM sites. 

o Use piezo spacing based on the formula developed by Cebon in Chapter 8 of the 
Handbook of Vehicle-Road Interaction (2000) 

o Place inductance loop sensors based on the recommendations of WIM sensor vendors 
and WIM controller equipment vendors.  

Use a triple threshold array as it provides slightly more accurate weight measurements and would 
provide some redundancy so that a double threshold array would still be operational if one of the 
sensors fails. 

• Dual Use WIM Sites – these types of sites must be configured to meet both traffic monitoring and 
real time enforcement requirements; it is recommended: 



 

 

o All lanes be instrumented for weight measurements to meet traffic monitoring 
requirements. 

o Enforcement lanes be instrumented with additional technologies that support generating 
information required for real time enforcement. 

o Due to the more complex requirements of enforcement sites, these sites should be 
designed, maintained, and operated with the other enforcement WIM sites. 

o The enforcement systems should be designed based on the virtual weigh station (VWS) 
model. 

6.4 WIM Data Products 

There are many potential uses of statistics generated from data collected by WIM systems.  NCDOT should 
meet with agency staff in each specialty area to identify the specific uses, the statistics required, and any 
standards specified for that data.  Potential uses are: 

• Traffic Monitoring – systems need to support meeting the federally mandated traffic monitoring 
requirements, support the generation of Highway Performance Monitoring System (HPMS) data, 
and the submittal of WIM data in the FHWA TMAS reporting system. 

• Enforcement – requirements for enforcement include: 
o Real time screening of trucks for potential violations 
o Support enforcement planning activities 
o Support evaluation of the impact of enforcement activities (performance measures) 

• Pavement design statistics (MEPDG and AASHTO methods) 

• Pavement monitoring 

• Bridge design 

• Bridge monitoring 

• Freight and logistics 

• Regulatory 

6.5 WIM Program Size 

The size of the program should be dependent upon the required number of WIM sites needed to meet the 
data needs of the intended products. The size should be consistent with the number of unique patterns 
occurring in North Carolina and the number of sites required to characterize each of those patterns reliably.  

This type of analysis was performed in a previous NCDOT research project (RP 2008-11) that supported 
the generation of design statistics for the MEPDG pavement design method.  This report recommended the 
required number of WIM sites to meet the precision standards specified in the Traffic Monitoring Guide for 
the 4 Axle Load Distribution Factor groups (ALDF) should be 53 WIM sites. Due to the operational 
processes of managing continuous traffic monitoring, a few additional WIM sites are recommended to avoid 
inadequate sampling due to older sites being retired and the time it takes for new sites to have adequate 
data to be grouped.  A total of 60 WIM sites are recommended as the target for planning WIM program 
development.  The final number required should be determined based on the data collected at new WIM 
sites implemented in the program. Our recommendations are: 

ALDF WIM Sites 

1 26 
2  8 
3  5 
4 14 

 

6.6 WIM Program Costs 

Our cost estimates are based on the 60 WIM sites recommended above and the costs identified in the 
survey for the technologies recommended previously.  A range is provided for each type of expense due to 
the ranges of costs gathered in the surveys for those technologies.  Cost estimates are provided for initial 
installation of new WIM sites and annual maintenance (including calibration).  The cost estimates for 
program infrastructure are: 



 

 

 

Activity Frequency Low Estimate High Estimate 

Installation One Time $18,000,000  $24,000,000  

Maintenance Annual $2,000,000  $3,000,000  

 

Other major costs associated with managing the program are software and staffing.  It is anticipated the 
TCDS software currently used for managing traffic monitoring data sets will require customizations to 
generate some of the required data products.  Other software may be required to generate and manage 
some data products. 

The Traffic Survey Group has staffing to support the current level of traffic monitoring.  Adding 60 WIM sites 
will require additional staffing to effectively support the management of data processing, QC/QA, and 
generation of data products.  Regardless of whether this activity is performed in house or outsourced, the 
staffing requirements must be funded.  Estimated costs associated with these requirements are: 

 

Activity Frequency Low Estimate High Estimate 

TCDS Customizations One Time $400,000  $800,000  

Other Software Licensing One Time $200,000  $400,000  

Software Maintenance Annual $100,000  $200,000  

Staffing (1 engineer, 3 technicians) Annual $400,000  $600,000  

Overall WIM program costs are estimated to be: 

Activity Frequency Low Estimate High Estimate 

Program Implementation One Time $18,600,000  25,200,000 

Program Management Annual $2,500,000  3,800,000 

 

These cost estimates are intended to provide the relative level of funding required from the NCDOT for 
implementation and management of the recommended WIM program.  They exclude the costs associated 
with additional enforcement technologies at WIM sites.   

 

6.7 WIM Program Benefits 

In general, the benefits associated with the use of North Carolina vehicle weight data are related to those 
processes that employ the data products.  Additional enforcement sites will support more effective detection 
of violators resulting in a higher level of compliance with weight limits and safety regulations.  Improving 
safety on NC highways and preserving infrastructure.  Using NC based statistics for planning and design 
of highways will result in facilities that meet the needs of the traveling public and businesses.  Better designs 
result in more predictable life cycles for infrastructure, improving the management of maintenance and 
replacement activities.  Given the high cost of WIM systems it is critical to leverage the use of that data for 
those processes that require vehicle weight-based statistics.  Many of these processes rely on national 
defaults as inputs today.  Which often results in overly conservative designs.  Use of NC based data will 
support better designs and more effective use of limited funding. 

6.8 Funding Sources 

The prior WIM program was supported through funds from Statewide Planning and Research (SPR).  The 
bulk of it came from planning funds but some funding was provided from the research portion for the LTPP 
pavement research sites.  The SPR funding source is very limited and the legacy program was substantially 
impacted by this ultimately leading to its discontinuation.  The proposed program is intended to leverage 



 

 

the WIM data to support many processes and other funding sources should be considered to support an 
effective vehicle weight monitoring program.  Potential funding sources are: 
 

• STIP Funding:  design statistics generated from vehicle monitoring data can be used for design 
processes for highway improvements; a portion of funding could come from STIP funds to 
support the design of these improvements. 

• SPR Funding: The Traffic Survey Group can use vehicle class data to generate seasonal factors 
for annualizing short term class counts; vehicle class and weight data will be reported to FHWA in 
TMAS; SPR funds can be used for this traffic monitoring activity.  
Enforcement Funding: For the dual use sites, the WIM systems needed could be funded by 
NCDOT as this supports the data needs of the agency; for the instrumentation of enforcement 
lanes with additional technologies to support real time enforcement we recommend use of 
enforcement funding sources. 

A cost sharing approach would reduce the impact on any individual funding source and ensure there are 
adequate funds to manage an effective vehicle weight monitoring program. 

6.9 Sourcing Options 

For the previous monitoring program, a hybrid approach was used to manage the WIM installations and 
supporting systems. New WIM sites were installed, and initial calibration was performed by contractors.  All 
major maintenance activities were also contracted.  Inspections of contractor work were performed by the 
Traffic Survey Group (TSG).  For recurring calibrations, a trucking services contract provided a calibration 
truck, but calibration of the equipment was performed by TSG staff.  Operation and polling of WIM sites and 
basic maintenance were performed by TSG staff.  All data processing, QC/QA, and reporting activities were 
performed by TSG staff. 

For the revived monitoring system, a few options can be considered, such as: 

• Fully In House: This would require a substantial commitment of staff and equipment that many 
agencies find difficult to maintain. Few state agencies use this approach. 

• Hybrid Contracted and In House: This would be similar to the legacy sourcing method where major 
activities were contracted and operation and management of the systems were performed in house. 

• Fully Contracted: The WIM systems would be installed, calibrated, maintained, and operated by 
contractors but owned by NCDOT. 

• WIM Data as a Service:  The WIM systems would be installed, calibrated, maintained, operated, 
and owned by contractors. NCDOT would pay for the data provided. 

6.10 Vehicle Weight Monitoring Implementation Plan 

A high-level plan for addressing the major requirements of a WIM program and the progression of 
implementation steps are provided below. 

1) Design Phase 

• Identify WIM data uses and prepare data specifications for each 

• Identify design resources and prepare design and contracting templates 

• Identify funding sources and setup funding mechanisms 

• Evaluate software needs, software options, and procure software 

• Evaluate sourcing options and select sourcing method 

• Identify corridors for WIM site selection and evaluate WIM locations 

• Develop and implement WIM data QC/QA methods 

2) Site Installation Phase 1 – Install 20 WIM sites 

3) Evaluate data from new WIM sites to identify patterns and group assignments 

4) Site Installation Phase 2 – Install 20 WIM sites 

5) Evaluate data from new WIM sites to identify patterns and group assignments 

6) Site Installation Phase 3 – Install 20 WIM sites 



 

 

7) Evaluate data from new WIM sites to identify patterns and group assignments 

8) Implement production of data products 

It is critical to evaluate new WIM sites after each installation phase to determine the ALDF they group with 
so that the next set of WIM sites can be selected to meet the sampling requirements of each group. 

6.11 Emerging Technology Assessment 

As presented in Section 5, the research team recommends integrating emerging technologies in 
establishing a new weight monitoring system, which may require another project prior to the implementation 
phase. Integrating AI and CV technologies would require a separate implementation plan as outlined below.  

Research and Development Phase (0-6 Months):  
   - Conduct thorough research on current AI and CV technologies. 
   - Develop the initial AI algorithms and CV models. 

Prototype Development (6-12 Months):  
   - Create a prototype system integrating AI, CV, and necessary hardware. 
   - Begin initial testing in controlled environments. 

System Testing and Refinement (12-18 Months):  
   - Deploy the system in a real-world environment for testing. 
   - Collect data, analyze performance, and refine the system accordingly. 

Final System Development (18-24 Months):  
   - Finalize the design based on test results. 
   - Prepare for full-scale production and deployment. 

Deployment and Training (24-30 Months):  
   - Install the system in selected locations. 
   - Conduct training sessions for operators and maintenance personnel. 

Post-Deployment Review and Support (30-36 Months):  
   - Monitor the system’s performance. 
   - Provide ongoing support and updates. 

 
This plan is designed to ensure a thorough and efficient development process, leading to a reliable and 
effective AI and CV-based WIM system. 
 
In conjunction with this effort, a cost analysis of the options should be conducted: 

 

• Research and Development: Estimated to involve significant investment primarily for AI and CV 
technology research, software development, and prototype testing  

• Hardware Acquisition: Costs for high-resolution cameras, sensors, and data processing units. 
Bulk purchases and long-term supplier agreements could reduce costs. 

• Software Licensing and Development: Expenses related to AI algorithm development, CV 
software, and system integration. 

• Installation and Deployment: Costs for installing the system at designated locations, including 
labor and materials. 

• Training and Education: Budget for training personnel in system operation and maintenance. 

• Maintenance and Upgrades: Ongoing costs for software updates, hardware maintenance, and 
system improvements. 

• Operational Expenses: Regular expenses for system operation, including power and data 
management. 

• Contingency Funding: Allocation for unforeseen expenses and challenges during implementation. 

The total cost will depend on the scale of deployment and specific technology choices, but investments in 
AI and CV technologies typically yield long-term savings and efficiency gains. 

Finally, a risk assessment should be conducted, including strategies to minimize any risk identified. 

 
Technological Failure: Risk of system malfunction due to software or hardware issues. 

   - Mitigation: Regular system maintenance, having backup systems, and robust software testing. 
Data Inaccuracy: Potential errors in AI and CV data analysis. 



 

 

   - Mitigation: Continuous algorithm refinement, use of redundant systems for verification. 
Adverse Weather Conditions: Impact on system's ability to accurately capture and process data. 

   - Mitigation: Use weather-resistant equipment and incorporate algorithms adaptable to various 
environmental conditions. 

Cybersecurity Threats: Risk of data breaches or system hacking. 
   - Mitigation: Implement strong cybersecurity protocols and regular security audits. 

Cost Overruns: Budgetary constraints leading to project delays or reduced functionality. 
   - Mitigation: Careful financial planning, regular budget reviews, and contingency funds. 

User Acceptance: Resistance to new technology from operators or stakeholders. 
   - Mitigation: Comprehensive training programs and demonstrating the system's benefits.  

 
Each risk should be accompanied by strategic measures to mitigate its impact, ensuring the smooth 
operation and reliability of the WIM system. This report presents a visionary approach to modernize Weight-
in-Motion (WIM) systems by integrating Artificial Intelligence (AI) and Computer Vision (CV). This innovative 
solution promises to enhance accuracy, efficiency, and cost-effectiveness in traffic management and 
infrastructure maintenance. The implementation plan, backed by a detailed risk assessment and mitigation 
strategy, paves the way for a seamless integration into existing traffic systems. Embracing this technology 
not only aligns with current ITS advancements but also sets a new standard for future transportation 
infrastructure monitoring and management. 
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